Gen L Takei, Yasuhiro Horibata, Fubito Toyama, Keitaro Hayashi, Asuka Morita, Motoshi Ouchi, Tomoe Fujita
{"title":"Hamster spermatozoa incorporate hypotaurine via TauT for self-protection.","authors":"Gen L Takei, Yasuhiro Horibata, Fubito Toyama, Keitaro Hayashi, Asuka Morita, Motoshi Ouchi, Tomoe Fujita","doi":"10.1530/REP-24-0022","DOIUrl":null,"url":null,"abstract":"<p><strong>In brief: </strong>Mammalian spermatozoa actively generate reactive oxygen species (ROS) during capacitation, a maturational process necessary for fertilization in vivo. This study shows that hypotaurine, a precursor of taurine present in the oviduct, is incorporated and concentrated in hamster sperm cells via the taurine transporter, TauT, for cytoprotection against self-produced ROS.</p><p><strong>Abstract: </strong>To achieve fertilization competence, mammalian spermatozoa undergo capacitation, during which they actively generate reactive oxygen species (ROS). Therefore, mammalian spermatozoa must protect themselves from these self-generated ROS. The mammalian oviductal fluid is rich in hypotaurine, a taurine precursor, which reportedly protects mammalian spermatozoa, including those of hamsters, from ROS; however, its precise mechanism remains unknown. This study aimed to elucidate the mechanism underlying hypotaurine-mediated protection of spermatozoa from ROS using hamsters, particularly focusing on the taurine/hypotaurine transporter TauT. The effect of hypotaurine on sperm motility and ROS levels was tested using sperm motility analysis and the CellROX dye and luminol assays. RNA sequencing analysis was performed to verify TauT expression. We found that hypotaurine was necessary for maintaining sperm motility and hyperactivated motility. Hypotaurine did not scavenge extracellular ROS but lowered intracellular ROS levels and was incorporated and concentrated in hamster spermatozoa. TauT was detected at both mRNA and protein levels. β-Alanine blocked hypotaurine transport, increased intracellular ROS levels, and inhibited hyperactivation. Elimination of Na+ or Cl- ions inhibited hypotaurine transport and increased intracellular ROS levels. Thus, these results indicated that hamster spermatozoa incorporated and concentrated hypotaurine in sperm cells via TauT to protect themselves from self-generated ROS.</p>","PeriodicalId":21127,"journal":{"name":"Reproduction","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1530/REP-24-0022","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In brief: Mammalian spermatozoa actively generate reactive oxygen species (ROS) during capacitation, a maturational process necessary for fertilization in vivo. This study shows that hypotaurine, a precursor of taurine present in the oviduct, is incorporated and concentrated in hamster sperm cells via the taurine transporter, TauT, for cytoprotection against self-produced ROS.
Abstract: To achieve fertilization competence, mammalian spermatozoa undergo capacitation, during which they actively generate reactive oxygen species (ROS). Therefore, mammalian spermatozoa must protect themselves from these self-generated ROS. The mammalian oviductal fluid is rich in hypotaurine, a taurine precursor, which reportedly protects mammalian spermatozoa, including those of hamsters, from ROS; however, its precise mechanism remains unknown. This study aimed to elucidate the mechanism underlying hypotaurine-mediated protection of spermatozoa from ROS using hamsters, particularly focusing on the taurine/hypotaurine transporter TauT. The effect of hypotaurine on sperm motility and ROS levels was tested using sperm motility analysis and the CellROX dye and luminol assays. RNA sequencing analysis was performed to verify TauT expression. We found that hypotaurine was necessary for maintaining sperm motility and hyperactivated motility. Hypotaurine did not scavenge extracellular ROS but lowered intracellular ROS levels and was incorporated and concentrated in hamster spermatozoa. TauT was detected at both mRNA and protein levels. β-Alanine blocked hypotaurine transport, increased intracellular ROS levels, and inhibited hyperactivation. Elimination of Na+ or Cl- ions inhibited hypotaurine transport and increased intracellular ROS levels. Thus, these results indicated that hamster spermatozoa incorporated and concentrated hypotaurine in sperm cells via TauT to protect themselves from self-generated ROS.
期刊介绍:
Reproduction is the official journal of the Society of Reproduction and Fertility (SRF). It was formed in 2001 when the Society merged its two journals, the Journal of Reproduction and Fertility and Reviews of Reproduction.
Reproduction publishes original research articles and topical reviews on the subject of reproductive and developmental biology, and reproductive medicine. The journal will consider publication of high-quality meta-analyses; these should be submitted to the research papers category. The journal considers studies in humans and all animal species, and will publish clinical studies if they advance our understanding of the underlying causes and/or mechanisms of disease.
Scientific excellence and broad interest to our readership are the most important criteria during the peer review process. The journal publishes articles that make a clear advance in the field, whether of mechanistic, descriptive or technical focus. Articles that substantiate new or controversial reports are welcomed if they are noteworthy and advance the field. Topics include, but are not limited to, reproductive immunology, reproductive toxicology, stem cells, environmental effects on reproductive potential and health (eg obesity), extracellular vesicles, fertility preservation and epigenetic effects on reproductive and developmental processes.