Deep profiling of plasmalogens by coupling the Paternò-Büchi derivatization with tandem mass spectrometry.

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS Analytical and Bioanalytical Chemistry Pub Date : 2024-08-01 Epub Date: 2024-06-11 DOI:10.1007/s00216-024-05376-9
Yichun Wang, Yu Xia
{"title":"Deep profiling of plasmalogens by coupling the Paternò-Büchi derivatization with tandem mass spectrometry.","authors":"Yichun Wang, Yu Xia","doi":"10.1007/s00216-024-05376-9","DOIUrl":null,"url":null,"abstract":"<p><p>Plasmalogens are a special class of glycerophospholipids characterized by a vinyl ether bond (-C = C-O-) at the sn-1 position of the glycerol backbone. Altered plasmalogen profiles have been observed in neurodegenerative diseases and cancers. Profiling of plasmalogens requires specifying the vinyl ether bond and differentiating them from various types of isobars and isomers. Herein, by coupling C = C derivatization via offline Paternò-Büchi reaction with liquid chromatography-tandem mass spectrometry, we have developed a sensitive workflow for analysis of plasmalogens from biological samples. Using bovine heart lipid extract as a model system, we profiled more than 100 distinct structures of plasmenylethanolamines (PE-Ps) and plasmenylcholines (PC-Ps) at the C = C location level, far exceeding previous reports. Analysis of human glioma and normal brain tissue samples revealed elevated n-10 C = C isomers of PE-Ps in the glioma tissue samples. These findings suggest that the developed workflow holds potential in aiding the study of altered metabolism of plasmalogens in clinical samples.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-024-05376-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Plasmalogens are a special class of glycerophospholipids characterized by a vinyl ether bond (-C = C-O-) at the sn-1 position of the glycerol backbone. Altered plasmalogen profiles have been observed in neurodegenerative diseases and cancers. Profiling of plasmalogens requires specifying the vinyl ether bond and differentiating them from various types of isobars and isomers. Herein, by coupling C = C derivatization via offline Paternò-Büchi reaction with liquid chromatography-tandem mass spectrometry, we have developed a sensitive workflow for analysis of plasmalogens from biological samples. Using bovine heart lipid extract as a model system, we profiled more than 100 distinct structures of plasmenylethanolamines (PE-Ps) and plasmenylcholines (PC-Ps) at the C = C location level, far exceeding previous reports. Analysis of human glioma and normal brain tissue samples revealed elevated n-10 C = C isomers of PE-Ps in the glioma tissue samples. These findings suggest that the developed workflow holds potential in aiding the study of altered metabolism of plasmalogens in clinical samples.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过将 Paternò-Büchi 衍生法与串联质谱联用,深入分析质谱。
质盐是一类特殊的甘油磷脂,其特点是在甘油骨架的sn-1位置有一个乙烯基醚键(-C = C-O-)。在神经退行性疾病和癌症中已经观察到质粒卤素谱的改变。质谱分析需要指定乙烯基醚键,并将它们与各种类型的异构体和同分异构体区分开来。在此,我们通过离线帕特诺-布奇(Paternò-Büchi)反应将 C = C 衍生化与液相色谱-串联质谱联用,开发出一种灵敏的工作流程,用于分析生物样本中的质卤素。以牛心脏脂质提取物为模型系统,我们在 C = C 位置水平上分析了 100 多种不同结构的质子乙醇胺(PE-Ps)和质子胆碱(PC-Ps),远远超过了之前的报道。对人类胶质瘤和正常脑组织样本的分析表明,胶质瘤组织样本中 PE-Ps 的 n-10 C = C 异构体含量升高。这些发现表明,所开发的工作流程在帮助研究临床样本中质氨酸代谢改变方面具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.00
自引率
4.70%
发文量
638
审稿时长
2.1 months
期刊介绍: Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.
期刊最新文献
Extraction of redox extracellular vesicles using exclusion-based sample preparation. Monomer-mediated growth of β-cyclodextrin-based microporous organic network as stationary phase for capillary electrochromatography. The evolution of data treatment tools in single-particle and single-cell ICP-MS analytics. Development of a high-throughput UHPLC-MS/MS method for the analysis of Fusarium and Alternaria toxins in cereals and cereal-based food. Rigorous scientific inquiry guided by creativity, curiosity and support: One of the last Renaissance scientists of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1