Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) in cancer: a patent review.

IF 5.4 2区 医学 Q1 CHEMISTRY, MEDICINAL Expert Opinion on Therapeutic Patents Pub Date : 2024-07-01 Epub Date: 2024-06-13 DOI:10.1080/13543776.2024.2367006
Massimiliano Gasparrini, Simone Giovannuzzi, Alessio Nocentini, Nadia Raffaelli, Claudiu T Supuran
{"title":"Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) in cancer: a patent review.","authors":"Massimiliano Gasparrini, Simone Giovannuzzi, Alessio Nocentini, Nadia Raffaelli, Claudiu T Supuran","doi":"10.1080/13543776.2024.2367006","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide (NAD) from nicotinamide. In addition to its role as essential redox cofactor, NAD also functions as a substrate for NAD-consuming enzymes, regulating multiple cellular processes such as DNA repair and gene expression, fundamental to sustain energetic needs for tumor growth. In this sense, NAMPT over-expression represents a common strategy that several tumor types adopt to sustain NAD production. In addition to its enzymatic role, NAMPT behaves as cytokine-like protein with pro-inflammatory function. Increasing evidence demonstrated that NAMPT inhibition represents a promising anti-cancer strategy to deplete NAD and impair cellular metabolism in cancer conditions.</p><p><strong>Areas covered: </strong>By using Espacenet, we collected the patents which identified new molecules, compounds, formulations and methods able to inhibit NAMPT from 2007 to date.</p><p><strong>Expert opinion: </strong>Most of the collected patents focused the attention on the ability of different compounds to inhibit the enzymatic activity of NAMPT, lacking other important aspects related to the extracellular role of NAMPT and the ability of alternative enzymes to counteract NAMPT-mediated NAD depletion. It is necessary to consider also these aspects to promote novel strategies and create novel inhibitors and molecules useful as anti-cancer compounds.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Therapeutic Patents","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13543776.2024.2367006","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide (NAD) from nicotinamide. In addition to its role as essential redox cofactor, NAD also functions as a substrate for NAD-consuming enzymes, regulating multiple cellular processes such as DNA repair and gene expression, fundamental to sustain energetic needs for tumor growth. In this sense, NAMPT over-expression represents a common strategy that several tumor types adopt to sustain NAD production. In addition to its enzymatic role, NAMPT behaves as cytokine-like protein with pro-inflammatory function. Increasing evidence demonstrated that NAMPT inhibition represents a promising anti-cancer strategy to deplete NAD and impair cellular metabolism in cancer conditions.

Areas covered: By using Espacenet, we collected the patents which identified new molecules, compounds, formulations and methods able to inhibit NAMPT from 2007 to date.

Expert opinion: Most of the collected patents focused the attention on the ability of different compounds to inhibit the enzymatic activity of NAMPT, lacking other important aspects related to the extracellular role of NAMPT and the ability of alternative enzymes to counteract NAMPT-mediated NAD depletion. It is necessary to consider also these aspects to promote novel strategies and create novel inhibitors and molecules useful as anti-cancer compounds.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
癌症中的烟酰胺磷酸核糖转移酶(NAMPT)抑制:专利回顾。
简介:烟酰胺磷酸核糖转移酶(NAMPT)是烟酰胺腺嘌呤二核苷酸(NAD)从烟酰胺生物合成过程中的限速酶。除了作为重要的氧化还原辅助因子外,NAD 还可作为消耗 NAD 的酶的底物,调节 DNA 修复和基因表达等多个细胞过程,是维持肿瘤生长所需能量的基础。从这个意义上说,NAMPT 过度表达是几种肿瘤类型为维持 NAD 生产而采取的共同策略。除了酶的作用外,NAMPT 还是一种细胞因子样蛋白,具有促炎功能。越来越多的证据表明,抑制 NAMPT 是一种很有前景的抗癌策略,可以消耗 NAD 并损害癌症情况下的细胞代谢。覆盖领域:通过 Espacenet,我们收集了 2007 年至今能够抑制 NAMPT 的新分子、化合物、制剂和方法的专利。专家意见:收集到的大多数专利都把注意力集中在不同化合物抑制 NAMPT 酶活性的能力上,缺乏与 NAMPT 的细胞外作用和替代酶抵消 NAMPT 介导的 NAD 消耗的能力有关的其他重要方面。有必要同时考虑这些方面,以促进新战略的制定,并创造出可作为抗癌化合物的新型抑制剂和分子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.10
自引率
1.50%
发文量
50
审稿时长
6-12 weeks
期刊介绍: Expert Opinion on Therapeutic Patents (ISSN 1354-3776 [print], 1744-7674 [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on recent pharmaceutical patent claims, providing expert opinion the scope for future development, in the context of the scientific literature. The Editors welcome: Reviews covering recent patent claims on compounds or applications with therapeutic potential, including biotherapeutics and small-molecule agents with specific molecular targets; and patenting trends in a particular therapeutic area Patent Evaluations examining the aims and chemical and biological claims of individual patents Perspectives on issues relating to intellectual property The audience consists of scientists, managers and decision-makers in the pharmaceutical industry and others closely involved in R&D Sample our Bioscience journals, sign in here to start your access, Latest two full volumes FREE to you for 14 days.
期刊最新文献
Urease inhibitors for the treatment of H. pylori. A patent review of UNC-51-like kinase 1/2 inhibitors (2019-present). Menin-MLL protein-protein interaction inhibitors: a patent review (2021-present). Therapeutic compounds targeting interleukin-1 receptor-associated kinase 4 (IRAK4): an updated patent review (2019 to present). A patent review of lactate dehydrogenase inhibitors (2014-present).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1