Expansion and Functional Diversification of Long-Wavelength-Sensitive Opsin in Anabantoid Fishes.

IF 2.1 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Molecular Evolution Pub Date : 2024-08-01 Epub Date: 2024-06-11 DOI:10.1007/s00239-024-10181-0
Jan Gerwin, Julián Torres-Dowdall, Thomas F Brown, Axel Meyer
{"title":"Expansion and Functional Diversification of Long-Wavelength-Sensitive Opsin in Anabantoid Fishes.","authors":"Jan Gerwin, Julián Torres-Dowdall, Thomas F Brown, Axel Meyer","doi":"10.1007/s00239-024-10181-0","DOIUrl":null,"url":null,"abstract":"<p><p>Gene duplication is one of the most important sources of novel genotypic diversity and the subsequent evolution of phenotypic diversity. Determining the evolutionary history and functional changes of duplicated genes is crucial for a comprehensive understanding of adaptive evolution. The evolutionary history of visual opsin genes is very dynamic, with repeated duplication events followed by sub- or neofunctionalization. While duplication of the green-sensitive opsins rh2 is common in teleost fish, fewer cases of multiple duplication events of the red-sensitive opsin lws are known. In this study, we investigate the visual opsin gene repertoire of the anabantoid fishes, focusing on the five lws opsin genes found in the genus Betta. We determine the evolutionary history of the lws opsin gene by taking advantage of whole-genome sequences of nine anabantoid species, including the newly assembled genome of Betta imbellis. Our results show that at least two independent duplications of lws occurred in the Betta lineage. The analysis of amino acid sequences of the lws paralogs of Betta revealed high levels of diversification in four of the seven transmembrane regions of the lws protein. Amino acid substitutions at two key-tuning sites are predicted to lead to differentiation of absorption maxima (λ<sub>max</sub>) between the paralogs within Betta. Finally, eye transcriptomics of B. splendens at different developmental stages revealed expression shifts between paralogs for all cone opsin classes. The lws genes are expressed according to their relative position in the lws opsin cluster throughout ontogeny. We conclude that temporal collinearity of lws expression might have facilitated subfunctionalization of lws in Betta and teleost opsins in general.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291592/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00239-024-10181-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/11 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gene duplication is one of the most important sources of novel genotypic diversity and the subsequent evolution of phenotypic diversity. Determining the evolutionary history and functional changes of duplicated genes is crucial for a comprehensive understanding of adaptive evolution. The evolutionary history of visual opsin genes is very dynamic, with repeated duplication events followed by sub- or neofunctionalization. While duplication of the green-sensitive opsins rh2 is common in teleost fish, fewer cases of multiple duplication events of the red-sensitive opsin lws are known. In this study, we investigate the visual opsin gene repertoire of the anabantoid fishes, focusing on the five lws opsin genes found in the genus Betta. We determine the evolutionary history of the lws opsin gene by taking advantage of whole-genome sequences of nine anabantoid species, including the newly assembled genome of Betta imbellis. Our results show that at least two independent duplications of lws occurred in the Betta lineage. The analysis of amino acid sequences of the lws paralogs of Betta revealed high levels of diversification in four of the seven transmembrane regions of the lws protein. Amino acid substitutions at two key-tuning sites are predicted to lead to differentiation of absorption maxima (λmax) between the paralogs within Betta. Finally, eye transcriptomics of B. splendens at different developmental stages revealed expression shifts between paralogs for all cone opsin classes. The lws genes are expressed according to their relative position in the lws opsin cluster throughout ontogeny. We conclude that temporal collinearity of lws expression might have facilitated subfunctionalization of lws in Betta and teleost opsins in general.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无颌鱼类中长波长敏感光蛋白的扩展和功能多样化
基因复制是新基因型多样性和随后表型多样性进化的最重要来源之一。确定重复基因的进化历史和功能变化对于全面了解适应性进化至关重要。视蛋白基因的进化史非常动态,重复复制事件之后会出现亚功能化或新功能化。绿色敏感视蛋白 rh2 的重复在远洋鱼类中很常见,而红色敏感视蛋白 lws 的多次重复事件却鲜为人知。在这项研究中,我们调查了无尾目鱼类的视觉蛋白基因谱系,重点研究了贝塔鱼属(Betta)中的五个 lws 蛋白基因。我们利用九种无尾目鱼类的全基因组序列(包括新组装的Betta imbellis基因组)确定了lws视蛋白基因的进化历史。我们的研究结果表明,在 Betta 系中至少发生了两次独立的 lws 复制。对 Betta 的 lws 准同源物氨基酸序列的分析表明,在 lws 蛋白的七个跨膜区中,有四个跨膜区出现了高度多样化。据预测,两个关键调谐位点上的氨基酸置换导致了 Betta 内各准同系物之间吸收最大值(λmax)的差异。最后,白芨在不同发育阶段的眼转录组学发现,所有视锥蛋白类的旁系亲属之间都存在表达变化。在整个本体发育过程中,lws基因根据其在lws视蛋白簇中的相对位置进行表达。我们的结论是,lws表达的时间共线性可能促进了lws在Betta和一般远足类动物视蛋白中的亚功能化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular Evolution
Journal of Molecular Evolution 生物-进化生物学
CiteScore
5.50
自引率
2.60%
发文量
36
审稿时长
3 months
期刊介绍: Journal of Molecular Evolution covers experimental, computational, and theoretical work aimed at deciphering features of molecular evolution and the processes bearing on these features, from the initial formation of macromolecular systems through their evolution at the molecular level, the co-evolution of their functions in cellular and organismal systems, and their influence on organismal adaptation, speciation, and ecology. Topics addressed include the evolution of informational macromolecules and their relation to more complex levels of biological organization, including populations and taxa, as well as the molecular basis for the evolution of ecological interactions of species and the use of molecular data to infer fundamental processes in evolutionary ecology. This coverage accommodates such subfields as new genome sequences, comparative structural and functional genomics, population genetics, the molecular evolution of development, the evolution of gene regulation and gene interaction networks, and in vitro evolution of DNA and RNA, molecular evolutionary ecology, and the development of methods and theory that enable molecular evolutionary inference, including but not limited to, phylogenetic methods.
期刊最新文献
Stress-Induced Constraint on Expression Noise of Essential Genes in E. coli. Correction: Analysis of Cancer-Resisting Evolutionary Adaptations in Wild Animals and Applications for Human Oncology. Putative MutS2 Homologs in Algae: More Goods in Shopping Bag? Volatile Organic Compound Metabolism on Early Earth. Evolution of Cellular Organization Along the First Branches of the Tree of Life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1