Adolescent chemogenetic activation of dopaminergic neurons leads to reversible decreases in amphetamine-induced stereotypic behavior.

IF 3.3 3区 医学 Q2 NEUROSCIENCES Molecular Brain Pub Date : 2024-06-11 DOI:10.1186/s13041-024-01110-9
Muhammad O Chohan, Amy B Lewandowski, Rebecca N Siegel, Kally C O'Reilly, Jeremy Veenstra-VanderWeele
{"title":"Adolescent chemogenetic activation of dopaminergic neurons leads to reversible decreases in amphetamine-induced stereotypic behavior.","authors":"Muhammad O Chohan, Amy B Lewandowski, Rebecca N Siegel, Kally C O'Reilly, Jeremy Veenstra-VanderWeele","doi":"10.1186/s13041-024-01110-9","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic perturbations of neuronal activity can evoke homeostatic and new setpoints for neurotransmission. Using chemogenetics to probe the relationship between neuronal cell types and behavior, we recently found reversible decreases in dopamine (DA) transmission, basal behavior, and amphetamine (AMPH) response following repeated stimulation of DA neurons in adult mice. It is unclear, however, whether altering DA neuronal activity via chemogenetics early in development leads to behavioral phenotypes that are reversible, as alterations of neuronal activity during developmentally sensitive periods might be expected to induce persistent effects on behavior. To examine the impact of developmental perturbation of DA neuron activity on basal and AMPH behavior, we expressed excitatory hM3D(Gq) in postnatal DA neurons in TH-Cre and WT mice. Basal and CNO- or AMPH-induced locomotion and stereotypy was evaluated in a longitudinal design, with clozapine N-oxide (CNO, 1.0 mg/kg) administered across adolescence (postnatal days 15-47). Repeated CNO administration did not impact basal behavior and only minimally reduced AMPH-induced hyperlocomotor response in adolescent TH-Cre<sup>hM3Dq</sup> mice relative to WT<sup>hM3Dq</sup> littermate controls. Following repeated CNO administration, however, AMPH-induced stereotypic behavior robustly decreased in adolescent TH-Cre<sup>hM3Dq</sup> mice relative to controls. A two-month CNO washout period rescued the diminished AMPH-induced stereotypic behavior. Our findings indicate that the homeostatic compensations that take place in response to chronic hM3D(Gq) stimulation during adolescence are temporary and are dependent on ongoing chemogenetic stimulation.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165814/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-024-01110-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic perturbations of neuronal activity can evoke homeostatic and new setpoints for neurotransmission. Using chemogenetics to probe the relationship between neuronal cell types and behavior, we recently found reversible decreases in dopamine (DA) transmission, basal behavior, and amphetamine (AMPH) response following repeated stimulation of DA neurons in adult mice. It is unclear, however, whether altering DA neuronal activity via chemogenetics early in development leads to behavioral phenotypes that are reversible, as alterations of neuronal activity during developmentally sensitive periods might be expected to induce persistent effects on behavior. To examine the impact of developmental perturbation of DA neuron activity on basal and AMPH behavior, we expressed excitatory hM3D(Gq) in postnatal DA neurons in TH-Cre and WT mice. Basal and CNO- or AMPH-induced locomotion and stereotypy was evaluated in a longitudinal design, with clozapine N-oxide (CNO, 1.0 mg/kg) administered across adolescence (postnatal days 15-47). Repeated CNO administration did not impact basal behavior and only minimally reduced AMPH-induced hyperlocomotor response in adolescent TH-CrehM3Dq mice relative to WThM3Dq littermate controls. Following repeated CNO administration, however, AMPH-induced stereotypic behavior robustly decreased in adolescent TH-CrehM3Dq mice relative to controls. A two-month CNO washout period rescued the diminished AMPH-induced stereotypic behavior. Our findings indicate that the homeostatic compensations that take place in response to chronic hM3D(Gq) stimulation during adolescence are temporary and are dependent on ongoing chemogenetic stimulation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
青春期化学基因激活多巴胺能神经元会导致苯丙胺诱导的刻板行为可逆性减少。
神经元活动的慢性扰动可唤起神经传递的平衡和新的设定点。最近,我们利用化学遗传学探究了神经元细胞类型与行为之间的关系,发现在反复刺激成年小鼠的多巴胺(DA)神经元后,多巴胺(DA)传递、基础行为和苯丙胺(AMPH)反应会出现可逆性下降。然而,目前还不清楚在发育早期通过化学遗传学改变DA神经元活性是否会导致可逆的行为表型,因为在发育敏感期改变神经元活性可能会对行为产生持续影响。为了研究 DA 神经元活性的发育扰动对基础行为和 AMPH 行为的影响,我们在 TH-Cre 和 WT 小鼠的出生后 DA 神经元中表达了兴奋性 hM3D(Gq)。我们在整个青春期(出生后第 15-47 天)对氯氮平 N-氧化物(CNO,1.0 mg/kg)进行了纵向设计,评估了基础行为以及 CNO 或 AMPH 诱导的运动和刻板行为。与 WThM3Dq 同卵对照组相比,重复给药 CNO 不会影响 TH-CrehM3Dq 小鼠的基础行为,也只会轻微降低 AMPH 诱导的过度运动反应。然而,在重复给予 CNO 后,相对于对照组,AMPH 诱导的青少年 TH-CrehM3Dq 小鼠的刻板行为显著减少。两个月的 CNO 冲洗期可挽救 AMPH 诱导的刻板行为的减少。我们的研究结果表明,在青春期对 hM3D(Gq) 的慢性刺激所产生的平衡补偿是暂时的,并且依赖于持续的化学刺激。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Brain
Molecular Brain NEUROSCIENCES-
CiteScore
7.30
自引率
0.00%
发文量
97
审稿时长
>12 weeks
期刊介绍: Molecular Brain is an open access, peer-reviewed journal that considers manuscripts on all aspects of studies on the nervous system at the molecular, cellular, and systems level providing a forum for scientists to communicate their findings. Molecular brain research is a rapidly expanding research field in which integrative approaches at the genetic, molecular, cellular and synaptic levels yield key information about the physiological and pathological brain. These studies involve the use of a wide range of modern techniques in molecular biology, genomics, proteomics, imaging and electrophysiology.
期刊最新文献
Circadian cilia transcriptome in mouse brain across physiological and pathological states. TRPM4 inhibition slows neuritogenesis progression of cortical neurons Simulated weightlessness procedure, head-down bed rest has reversible effects on the metabolism of rhesus macaque. Absence of ATG9A and synaptophysin demixing on Rab5 mutation-induced giant endosomes. Electroacupuncture reduces inflammatory damage following cerebral ischemia-reperfusion by enhancing ABCA1-mediated efferocytosis in M2 microglia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1