Patrícia Gonçalves Prates Barbosa , Izinara Rosse , Maria Ana Santana e Figueiredo Bessa , Débora Faria Silva , Margarete Alice Fontes Saraiva , Aureliano Claret Cunha , Lauro Moraes , Bruna Trindade de Carvalho , Maria R. Foulquié-Moreno , Johan M. Thevelein , Maria José Magalhães Trópia , Ieso Miranda Castro , Rogelio Lopes Brandão
{"title":"Genomic approachesidentifySTT4 as a new component in glucose-induced activation of yeast plasma membrane H+-ATPase","authors":"Patrícia Gonçalves Prates Barbosa , Izinara Rosse , Maria Ana Santana e Figueiredo Bessa , Débora Faria Silva , Margarete Alice Fontes Saraiva , Aureliano Claret Cunha , Lauro Moraes , Bruna Trindade de Carvalho , Maria R. Foulquié-Moreno , Johan M. Thevelein , Maria José Magalhães Trópia , Ieso Miranda Castro , Rogelio Lopes Brandão","doi":"10.1016/j.ceca.2024.102909","DOIUrl":null,"url":null,"abstract":"<div><p>Many studies have focused on identifying the signaling pathway by which addition of glucose triggers post-translational activation of the plasma membrane <em>H</em><sup>+</sup>-ATPase in yeast. They have revealed that calcium signaling is involved in the regulatory pathway, supported for instance by the phenotype of mutants in<em>ARG82</em> that encodes an inositol kinase that phosphorylates inositol triphosphate (IP<sub>3</sub>). Strong glucose-induced calcium signaling, and high glucose-induced plasma membrane <em>H</em><sup>+</sup>-ATPase activation have been observed in a specific yeast strain with the PJ genetic background. In this study, we have applied pooled-segregant whole genome sequencing, QTL analysis and a new bioinformatics methodology for determining SNP frequencies to identify the cause of this discrepancy and possibly new components of the signaling pathway. This has led to the identification of an <em>STT4</em> allele with 6 missense mutations as a major causative allele, further supported by the observation that deletion of <em>STT4</em> in the inferior parent caused a similar increase in glucose-induced plasma membrane <em>H</em><sup>+</sup>-ATPase activation. However, the effect on calcium signaling was different indicating the presence of additional relevant genetic differences between the superior and reference strains. Our results suggest that phosphatidylinositol-4-phosphate might play a role in the glucose-induced activation of plasma membrane <em>H</em><sup>+</sup>-ATPase by controlling intracellular calcium release through the modulation of the activity of phospholipase C.</p></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"123 ","pages":"Article 102909"},"PeriodicalIF":4.3000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell calcium","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143416024000678","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Many studies have focused on identifying the signaling pathway by which addition of glucose triggers post-translational activation of the plasma membrane H+-ATPase in yeast. They have revealed that calcium signaling is involved in the regulatory pathway, supported for instance by the phenotype of mutants inARG82 that encodes an inositol kinase that phosphorylates inositol triphosphate (IP3). Strong glucose-induced calcium signaling, and high glucose-induced plasma membrane H+-ATPase activation have been observed in a specific yeast strain with the PJ genetic background. In this study, we have applied pooled-segregant whole genome sequencing, QTL analysis and a new bioinformatics methodology for determining SNP frequencies to identify the cause of this discrepancy and possibly new components of the signaling pathway. This has led to the identification of an STT4 allele with 6 missense mutations as a major causative allele, further supported by the observation that deletion of STT4 in the inferior parent caused a similar increase in glucose-induced plasma membrane H+-ATPase activation. However, the effect on calcium signaling was different indicating the presence of additional relevant genetic differences between the superior and reference strains. Our results suggest that phosphatidylinositol-4-phosphate might play a role in the glucose-induced activation of plasma membrane H+-ATPase by controlling intracellular calcium release through the modulation of the activity of phospholipase C.
期刊介绍:
Cell Calcium covers the field of calcium metabolism and signalling in living systems, from aspects including inorganic chemistry, physiology, molecular biology and pathology. Topic themes include:
Roles of calcium in regulating cellular events such as apoptosis, necrosis and organelle remodelling
Influence of calcium regulation in affecting health and disease outcomes