Neural networks for geospatial data

IF 3 1区 数学 Q1 STATISTICS & PROBABILITY Journal of the American Statistical Association Pub Date : 2024-05-20 DOI:10.1080/01621459.2024.2356293
Wentao Zhan, Abhirup Datta
{"title":"Neural networks for geospatial data","authors":"Wentao Zhan, Abhirup Datta","doi":"10.1080/01621459.2024.2356293","DOIUrl":null,"url":null,"abstract":"Abstract–Analysis of geospatial data has traditionally been model-based, with a mean model, customarily specified as a linear regression on the covariates, and a Gaussian process covariance model, ...","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"123 4 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Statistical Association","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/01621459.2024.2356293","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract–Analysis of geospatial data has traditionally been model-based, with a mean model, customarily specified as a linear regression on the covariates, and a Gaussian process covariance model, ...
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于地理空间数据的神经网络
摘要--地理空间数据分析传统上以模型为基础,平均值模型(通常指定为对协变因素的线性回归)和高斯过程协方差模型(通常指定为对协变因素的线性回归)都是基于模型的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
8.10%
发文量
168
审稿时长
12 months
期刊介绍: Established in 1888 and published quarterly in March, June, September, and December, the Journal of the American Statistical Association ( JASA ) has long been considered the premier journal of statistical science. Articles focus on statistical applications, theory, and methods in economic, social, physical, engineering, and health sciences. Important books contributing to statistical advancement are reviewed in JASA . JASA is indexed in Current Index to Statistics and MathSci Online and reviewed in Mathematical Reviews. JASA is abstracted by Access Company and is indexed and abstracted in the SRM Database of Social Research Methodology.
期刊最新文献
ROC Analysis for Classification and Prediction in Practice ℓ1 -based Bayesian Ideal Point Model for Multidimensional Politics Local signal detection on irregular domains with generalized varying coefficient models Functional Data Analysis with R. Probability Modeling and Statistical Inference in Cancer Screening
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1