Fractures in women with type 2 diabetes are associated with marked deficits in cortical parameters and trabecular plates.

IF 5.1 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Journal of Bone and Mineral Research Pub Date : 2024-08-21 DOI:10.1093/jbmr/zjae091
Sanchita Agarwal, Carmen Germosen, Isabella Rosillo, Mariana Bucovsky, Ivelisse Colon, Nayoung Kil, Zexi Wang, Andreea Dinescu, Xiang-Dong Edward Guo, Marcella Walker
{"title":"Fractures in women with type 2 diabetes are associated with marked deficits in cortical parameters and trabecular plates.","authors":"Sanchita Agarwal, Carmen Germosen, Isabella Rosillo, Mariana Bucovsky, Ivelisse Colon, Nayoung Kil, Zexi Wang, Andreea Dinescu, Xiang-Dong Edward Guo, Marcella Walker","doi":"10.1093/jbmr/zjae091","DOIUrl":null,"url":null,"abstract":"<p><p>The basis for increased fracture risk in type 2 diabetes (T2DM) is not well understood. In this multi-ethnic, population-based study (n = 565), we investigated bone microstructure, trabecular plate/rod morphology, and mineralization in women with T2DM (n = 175) with and without fracture using a second-generation HRpQCT and individual trabecula segmentation and mineralization (ITS; ITM). Covariate-adjusted aBMD was 3.0%-6.5% higher at all sites (all p<.005) in T2DM vs controls. By HRpQCT, T2DM had higher covariate-adjusted trabecular vBMD (5.3%-6.4%) and number (3.8%-5.1%) and greater cortical area at the radius and tibia. Covariate-adjusted cortical porosity was 10.0% higher at the tibia only in T2DM vs controls, but failure load did not differ. Among women with T2DM, those with adult atraumatic fracture (n = 59) had 5.2%-8.5% lower adjusted aBMD at all sites by DXA compared with those without fracture (n = 103). By HRpQCT, those with fracture had lower adjusted total vBMD and smaller cortical area (10.2%-16.1%), lower cortical thickness (10.5-15.8%) and lower cortical vBMD associated with 18.1 and 17.2% lower failure load at the radius and tibia, respectively (all p<.05); plate volume and thickness were 5.7% and 4.7% lower, respectively, (p<.05) while rod volume fraction was 12.8% higher in the fracture group at the tibia only. Sodium glucose cotransporter 2 inhibitor users (SGLT2i; n = 19), tended to have lower radial rod tissue mineral density by ITS (p=.06). GLP1 agonist users (n = 19) had trabecular deficits at both sites and higher cortical porosity and larger pores at the distal tibia. In summary, T2DM is associated with increased cortical porosity while those with T2DM and fracture have more marked cortical deficits and fewer trabecular plates associated with lower failure load.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":"1083-1093"},"PeriodicalIF":5.1000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337576/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone and Mineral Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jbmr/zjae091","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

The basis for increased fracture risk in type 2 diabetes (T2DM) is not well understood. In this multi-ethnic, population-based study (n = 565), we investigated bone microstructure, trabecular plate/rod morphology, and mineralization in women with T2DM (n = 175) with and without fracture using a second-generation HRpQCT and individual trabecula segmentation and mineralization (ITS; ITM). Covariate-adjusted aBMD was 3.0%-6.5% higher at all sites (all p<.005) in T2DM vs controls. By HRpQCT, T2DM had higher covariate-adjusted trabecular vBMD (5.3%-6.4%) and number (3.8%-5.1%) and greater cortical area at the radius and tibia. Covariate-adjusted cortical porosity was 10.0% higher at the tibia only in T2DM vs controls, but failure load did not differ. Among women with T2DM, those with adult atraumatic fracture (n = 59) had 5.2%-8.5% lower adjusted aBMD at all sites by DXA compared with those without fracture (n = 103). By HRpQCT, those with fracture had lower adjusted total vBMD and smaller cortical area (10.2%-16.1%), lower cortical thickness (10.5-15.8%) and lower cortical vBMD associated with 18.1 and 17.2% lower failure load at the radius and tibia, respectively (all p<.05); plate volume and thickness were 5.7% and 4.7% lower, respectively, (p<.05) while rod volume fraction was 12.8% higher in the fracture group at the tibia only. Sodium glucose cotransporter 2 inhibitor users (SGLT2i; n = 19), tended to have lower radial rod tissue mineral density by ITS (p=.06). GLP1 agonist users (n = 19) had trabecular deficits at both sites and higher cortical porosity and larger pores at the distal tibia. In summary, T2DM is associated with increased cortical porosity while those with T2DM and fracture have more marked cortical deficits and fewer trabecular plates associated with lower failure load.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2 型糖尿病女性患者的骨折与皮质参数和小梁板的明显缺陷有关。
2型糖尿病(T2DM)患者骨折风险增加的原因尚不十分清楚。在这项基于人群的多种族研究(n = 565)中,我们使用第二代 HRpQCT 和单个骨小梁分割和矿化(ITS;ITM)研究了有骨折和无骨折的 T2DM 女性患者(n = 175)的骨微结构、骨小梁板/杆形态和矿化情况。经相关因素调整后,所有部位的 aBMD 均高出 3.0-6.5%(所有 P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Bone and Mineral Research
Journal of Bone and Mineral Research 医学-内分泌学与代谢
CiteScore
11.30
自引率
6.50%
发文量
257
审稿时长
2 months
期刊介绍: The Journal of Bone and Mineral Research (JBMR) publishes highly impactful original manuscripts, reviews, and special articles on basic, translational and clinical investigations relevant to the musculoskeletal system and mineral metabolism. Specifically, the journal is interested in original research on the biology and physiology of skeletal tissues, interdisciplinary research spanning the musculoskeletal and other systems, including but not limited to immunology, hematology, energy metabolism, cancer biology, and neurology, and systems biology topics using large scale “-omics” approaches. The journal welcomes clinical research on the pathophysiology, treatment and prevention of osteoporosis and fractures, as well as sarcopenia, disorders of bone and mineral metabolism, and rare or genetically determined bone diseases.
期刊最新文献
Expression of Concern: CYP4A22 loss-of-function causes a new type of vitamin D-dependent rickets (VDDR1C). A new Col1a1 conditional knock-in mouse model to study osteogenesis imperfecta. Bmpr1aa modulates the severity of the skeletal phenotype in an fkbp10-deficient Bruck syndrome zebrafish model. The role of vitamin D metabolism in regulating bone turnover in adolescents with perinatally-acquired HIV in southern Africa: a cross-sectional study in Zimbabwe and Zambia. Thrombopoietic agents enhance bone healing in mice, rats, and pigs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1