L-valine is a powerful stimulator of GLP-1 secretion in rodents and stimulates secretion through ATP-sensitive potassium channels and voltage-gated calcium channels.

IF 4.6 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Nutrition & Diabetes Pub Date : 2024-06-11 DOI:10.1038/s41387-024-00303-4
Ida Marie Modvig, Mark M Smits, Katrine Douglas Galsgaard, Anna Pii Hjørne, Anna Katarzyna Drzazga, Mette Marie Rosenkilde, Jens Juul Holst
{"title":"L-valine is a powerful stimulator of GLP-1 secretion in rodents and stimulates secretion through ATP-sensitive potassium channels and voltage-gated calcium channels.","authors":"Ida Marie Modvig, Mark M Smits, Katrine Douglas Galsgaard, Anna Pii Hjørne, Anna Katarzyna Drzazga, Mette Marie Rosenkilde, Jens Juul Holst","doi":"10.1038/s41387-024-00303-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>We previously reported that, among all the naturally occurring amino acids, L-valine is the most powerful luminal stimulator of glucagon-like peptide 1 (GLP-1) release from the upper part of the rat small intestine. This makes L-valine an interesting target for nutritional-based modulation of GLP-1 secretion. However, the molecular mechanism of L-valine-induced secretion remains unknown.</p><p><strong>Methods: </strong>We aimed to investigate the effect of orally given L-valine in mice and to identify the molecular details of L-valine stimulated GLP-1 release using the isolated perfused rat small intestine and GLUTag cells. In addition, the effect of L-valine on hormone secretion from the distal intestine was investigated using a perfused rat colon.</p><p><strong>Results: </strong>Orally given L-valine (1 g/kg) increased plasma levels of active GLP-1 comparably to orally given glucose (2 g/kg) in male mice, supporting that L-valine is a powerful stimulator of GLP-1 release in vivo (P > 0.05). Luminal L-valine (50 mM) strongly stimulated GLP-1 release from the perfused rat small intestine (P < 0.0001), and inhibition of voltage-gated Ca<sup>2+</sup>-channels with nifedipine (10 μM) inhibited the GLP-1 response (P < 0.01). Depletion of luminal Na<sup>+</sup> did not affect L-valine-induced GLP-1 secretion (P > 0.05), suggesting that co-transport of L-valine and Na<sup>+</sup> is not important for the depolarization necessary to activate the voltage-gated Ca<sup>2+</sup>-channels. Administration of the K<sub>ATP</sub>-channel opener diazoxide (250 μM) completely blocked the L-valine induced GLP-1 response (P < 0.05), suggesting that L-valine induced depolarization arises from metabolism and opening of K<sub>ATP</sub>-channels. Similar to the perfused rat small intestine, L-valine tended to stimulate peptide tyrosine-tyrosine (PYY) and GLP-1 release from the perfused rat colon.</p><p><strong>Conclusions: </strong>L-valine is a powerful stimulator of GLP-1 release in rodents. We propose that intracellular metabolism of L-valine leading to closure of K<sub>ATP</sub>-channels and opening of voltage-gated Ca<sup>2+</sup>-channels are involved in L-valine induced GLP-1 secretion.</p>","PeriodicalId":19339,"journal":{"name":"Nutrition & Diabetes","volume":"14 1","pages":"43"},"PeriodicalIF":4.6000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166632/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition & Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41387-024-00303-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: We previously reported that, among all the naturally occurring amino acids, L-valine is the most powerful luminal stimulator of glucagon-like peptide 1 (GLP-1) release from the upper part of the rat small intestine. This makes L-valine an interesting target for nutritional-based modulation of GLP-1 secretion. However, the molecular mechanism of L-valine-induced secretion remains unknown.

Methods: We aimed to investigate the effect of orally given L-valine in mice and to identify the molecular details of L-valine stimulated GLP-1 release using the isolated perfused rat small intestine and GLUTag cells. In addition, the effect of L-valine on hormone secretion from the distal intestine was investigated using a perfused rat colon.

Results: Orally given L-valine (1 g/kg) increased plasma levels of active GLP-1 comparably to orally given glucose (2 g/kg) in male mice, supporting that L-valine is a powerful stimulator of GLP-1 release in vivo (P > 0.05). Luminal L-valine (50 mM) strongly stimulated GLP-1 release from the perfused rat small intestine (P < 0.0001), and inhibition of voltage-gated Ca2+-channels with nifedipine (10 μM) inhibited the GLP-1 response (P < 0.01). Depletion of luminal Na+ did not affect L-valine-induced GLP-1 secretion (P > 0.05), suggesting that co-transport of L-valine and Na+ is not important for the depolarization necessary to activate the voltage-gated Ca2+-channels. Administration of the KATP-channel opener diazoxide (250 μM) completely blocked the L-valine induced GLP-1 response (P < 0.05), suggesting that L-valine induced depolarization arises from metabolism and opening of KATP-channels. Similar to the perfused rat small intestine, L-valine tended to stimulate peptide tyrosine-tyrosine (PYY) and GLP-1 release from the perfused rat colon.

Conclusions: L-valine is a powerful stimulator of GLP-1 release in rodents. We propose that intracellular metabolism of L-valine leading to closure of KATP-channels and opening of voltage-gated Ca2+-channels are involved in L-valine induced GLP-1 secretion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
L -缬氨酸是啮齿动物 GLP-1 分泌的强大刺激物,可通过 ATP 敏感钾通道和电压门控钙通道刺激分泌。
背景:我们以前曾报道过,在所有天然氨基酸中,L-缬氨酸是大鼠小肠上部释放胰高血糖素样肽 1(GLP-1)的最强腔内刺激物。因此,L-缬氨酸是以营养为基础调节 GLP-1 分泌的一个有趣靶点。然而,L-缬氨酸诱导分泌的分子机制仍然未知:我们的目的是研究口服 L-缬氨酸对小鼠的影响,并利用离体灌流大鼠小肠和 GLUTag 细胞确定 L-缬氨酸刺激 GLP-1 释放的分子细节。此外,还利用灌流大鼠结肠研究了左旋缬氨酸对远端肠道激素分泌的影响:结果:口服 L-缬氨酸(1 克/千克)可提高雄性小鼠血浆中活性 GLP-1 的水平,与口服葡萄糖(2 克/千克)的效果相当,这证明 L-缬氨酸对体内 GLP-1 的释放具有强大的刺激作用(P > 0.05)。腔内 L-缬氨酸(50 mM)强烈刺激灌流大鼠小肠释放 GLP-1(硝苯地平(10 μM)可抑制 GLP-1 反应(P + 不影响 L-缬氨酸诱导的 GLP-1 分泌(P > 0.05)),这表明 L-缬氨酸和 Na+ 的共同转运对于激活电压门控 Ca2+ 通道所需的去极化并不重要。给予 KATP 通道开放剂二氮唑(250 μM)可完全阻断 L-缬氨酸诱导的 GLP-1 反应(P ATP 通道)。与灌流大鼠小肠类似,L-缬氨酸也倾向于刺激灌流大鼠结肠中肽类酪氨酸-酪氨酸(PYY)和 GLP-1 的释放:结论:L-缬氨酸是啮齿动物释放 GLP-1 的强大刺激物。我们认为,L-缬氨酸的细胞内代谢导致 KATP 通道关闭和电压门控 Ca2+ 通道开放参与了 L-缬氨酸诱导 GLP-1 的分泌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nutrition & Diabetes
Nutrition & Diabetes ENDOCRINOLOGY & METABOLISM-NUTRITION & DIETETICS
CiteScore
9.20
自引率
0.00%
发文量
50
审稿时长
>12 weeks
期刊介绍: Nutrition & Diabetes is a peer-reviewed, online, open access journal bringing to the fore outstanding research in the areas of nutrition and chronic disease, including diabetes, from the molecular to the population level.
期刊最新文献
The genetic and observational nexus between diabetes and arthritis: a national health survey and mendelian randomization analysis. The effect of a new developed synbiotic yogurt consumption on metabolic syndrome components in adults with metabolic syndrome: a randomized controlled clinical trial. Assessing the economic impact of obesity and overweight on employers: identifying opportunities to improve work force health and well-being. Black Tea drinks with inulin and dextrin reduced postprandial plasma glucose fluctuations in patients with type 2 diabetes: an acute, randomized, placebo-controlled, single-blind crossover study. Trends in Children's Dietary Inflammatory Index and association with prediabetes in U.S. adolescents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1