Machine learning-enhanced gesture recognition through impedance signal analysis.

Q3 Biochemistry, Genetics and Molecular Biology Journal of Electrical Bioimpedance Pub Date : 2024-06-11 eCollection Date: 2024-01-01 DOI:10.2478/joeb-2024-0007
Hoang Nhut Huynh, Quoc Tuan Nguyen Diep, Minh Quan Cao Dinh, Anh Tu Tran, Nguyen Chau Dang, Thien Luan Phan, Trung Nghia Tran, Congo Tak Shing Ching
{"title":"Machine learning-enhanced gesture recognition through impedance signal analysis.","authors":"Hoang Nhut Huynh, Quoc Tuan Nguyen Diep, Minh Quan Cao Dinh, Anh Tu Tran, Nguyen Chau Dang, Thien Luan Phan, Trung Nghia Tran, Congo Tak Shing Ching","doi":"10.2478/joeb-2024-0007","DOIUrl":null,"url":null,"abstract":"<p><p>Gesture recognition is a crucial aspect in the advancement of virtual reality, healthcare, and human-computer interaction, and requires innovative methodologies to meet the increasing demands for precision. This paper presents a novel approach that combines Impedance Signal Spectrum Analysis (ISSA) with machine learning to improve gesture recognition precision. A diverse dataset that included participants from various demographic backgrounds (five individuals) who were each executing a range of predefined gestures. The predefined gestures were designed to encompass a broad spectrum of hand movements, including intricate and subtle variations, to challenge the robustness of the proposed methodology. The machine learning model using the K-Nearest Neighbors (KNN), Gradient Boosting Machine (GBM), Naive Bayes (NB), Logistic Regression (LR), Random Forest (RF), and Support Vector Machine (SVM) algorithms demonstrated notable precision in performance evaluations. The individual accuracy values for each algorithm are as follows: KNN, 86%; GBM, 86%; NB, 84%; LR, 89%; RF, 87%; and SVM, 87%. These results emphasize the importance of impedance features in the refinement of gesture recognition. The adaptability of the model was confirmed under different conditions, highlighting its broad applicability.</p>","PeriodicalId":38125,"journal":{"name":"Journal of Electrical Bioimpedance","volume":"15 1","pages":"63-74"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165689/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Bioimpedance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/joeb-2024-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Gesture recognition is a crucial aspect in the advancement of virtual reality, healthcare, and human-computer interaction, and requires innovative methodologies to meet the increasing demands for precision. This paper presents a novel approach that combines Impedance Signal Spectrum Analysis (ISSA) with machine learning to improve gesture recognition precision. A diverse dataset that included participants from various demographic backgrounds (five individuals) who were each executing a range of predefined gestures. The predefined gestures were designed to encompass a broad spectrum of hand movements, including intricate and subtle variations, to challenge the robustness of the proposed methodology. The machine learning model using the K-Nearest Neighbors (KNN), Gradient Boosting Machine (GBM), Naive Bayes (NB), Logistic Regression (LR), Random Forest (RF), and Support Vector Machine (SVM) algorithms demonstrated notable precision in performance evaluations. The individual accuracy values for each algorithm are as follows: KNN, 86%; GBM, 86%; NB, 84%; LR, 89%; RF, 87%; and SVM, 87%. These results emphasize the importance of impedance features in the refinement of gesture recognition. The adaptability of the model was confirmed under different conditions, highlighting its broad applicability.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过阻抗信号分析实现机器学习增强型手势识别。
手势识别是推进虚拟现实、医疗保健和人机交互的一个重要方面,需要创新的方法来满足日益增长的精度要求。本文介绍了一种将阻抗信号频谱分析(ISSA)与机器学习相结合的新方法,以提高手势识别的精确度。一个多样化的数据集包括来自不同人口背景的参与者(五人),他们各自执行一系列预定义的手势。预定义手势的设计涵盖了广泛的手部动作,包括复杂而微妙的变化,以挑战所提议方法的鲁棒性。使用 K-Nearest Neighbors (KNN)、Gradient Boosting Machine (GBM)、Naive Bayes (NB)、Logistic Regression (LR)、Random Forest (RF) 和 Support Vector Machine (SVM) 算法的机器学习模型在性能评估中表现出了显著的精确性。每种算法的精度值如下:KNN,86%;GBM,86%;NB,84%;LR,89%;RF,87%;SVM,87%。这些结果强调了阻抗特征在完善手势识别中的重要性。该模型在不同条件下的适应性得到了证实,突出了其广泛的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Electrical Bioimpedance
Journal of Electrical Bioimpedance Engineering-Biomedical Engineering
CiteScore
3.00
自引率
0.00%
发文量
8
审稿时长
17 weeks
期刊最新文献
Effects of acute essential amino acid intake on post-prandial raw bioimpedance and fluid shifts between healthy young and older adults: An exploratory pilot study. Cell membrane capacitance relationship to reference-measured body composition parameters in young adult athletes. Electrical impedance myography as a marker of muscle mass in rats with simulated Anorexia Nervosa. Assessing the consistency between the anthropometric method and bioelectrical impedance analysis when calculating the Heath-Carter somatotype in people without obesity: a cross-sectional study. Predictive classification and regression models for bioimpedance vector analysis: Insights from a southern Cuban cohort.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1