Kaiwen Bao, Qi Zhang, Shuai Liu, Nan Song, Qiushi Guo, Ling Liu, Shanshan Tian, Jihui Hao, Yi Zhu, Kai Zhang, Ding Ai, Jie Yang, Zhi Yao, Roland Foisner, Lei Shi
{"title":"LAP2α preserves genome integrity through assisting RPA deposition on damaged chromatin.","authors":"Kaiwen Bao, Qi Zhang, Shuai Liu, Nan Song, Qiushi Guo, Ling Liu, Shanshan Tian, Jihui Hao, Yi Zhu, Kai Zhang, Ding Ai, Jie Yang, Zhi Yao, Roland Foisner, Lei Shi","doi":"10.1186/s13059-022-02638-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Single-stranded DNA (ssDNA) coated with replication protein A (RPA) acts as a key platform for the recruitment and exchange of genome maintenance factors in DNA damage response. Yet, how the formation of the ssDNA-RPA intermediate is regulated remains elusive.</p><p><strong>Results: </strong>Here, we report that the lamin-associated protein LAP2α is physically associated with RPA, and LAP2α preferentially facilitates RPA deposition on damaged chromatin via physical contacts between LAP2α and RPA1. Importantly, LAP2α-promoted RPA binding to ssDNA plays a critical role in protection of replication forks, activation of ATR, and repair of damaged DNA. We further demonstrate that the preference of LAP2α-promoted RPA loading on damaged chromatin depends on poly ADP-ribose polymerase PARP1, but not poly(ADP-ribosyl)ation.</p><p><strong>Conclusions: </strong>Our study provides mechanistic insight into RPA deposition in response to DNA damage and reveals a genome protection role of LAP2α.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"23 1","pages":"64"},"PeriodicalIF":12.3000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8883701/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-022-02638-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Single-stranded DNA (ssDNA) coated with replication protein A (RPA) acts as a key platform for the recruitment and exchange of genome maintenance factors in DNA damage response. Yet, how the formation of the ssDNA-RPA intermediate is regulated remains elusive.
Results: Here, we report that the lamin-associated protein LAP2α is physically associated with RPA, and LAP2α preferentially facilitates RPA deposition on damaged chromatin via physical contacts between LAP2α and RPA1. Importantly, LAP2α-promoted RPA binding to ssDNA plays a critical role in protection of replication forks, activation of ATR, and repair of damaged DNA. We further demonstrate that the preference of LAP2α-promoted RPA loading on damaged chromatin depends on poly ADP-ribose polymerase PARP1, but not poly(ADP-ribosyl)ation.
Conclusions: Our study provides mechanistic insight into RPA deposition in response to DNA damage and reveals a genome protection role of LAP2α.
期刊介绍:
Genome Biology is a leading research journal that focuses on the study of biology and biomedicine from a genomic and post-genomic standpoint. The journal consistently publishes outstanding research across various areas within these fields.
With an impressive impact factor of 12.3 (2022), Genome Biology has earned its place as the 3rd highest-ranked research journal in the Genetics and Heredity category, according to Thomson Reuters. Additionally, it is ranked 2nd among research journals in the Biotechnology and Applied Microbiology category. It is important to note that Genome Biology is the top-ranking open access journal in this category.
In summary, Genome Biology sets a high standard for scientific publications in the field, showcasing cutting-edge research and earning recognition among its peers.