{"title":"AMLdb: a comprehensive multi-omics platform to identify biomarkers and drug targets for acute myeloid leukemia.","authors":"Keerthana Vinod Kumar, Ambuj Kumar, Kavita Kundal, Avik Sengupta, Kunjulakshmi R, Subashani Singh, Bhanu Teja Korra, Simran Sharma, Vandana Suresh, Mayilaadumveettil Nishana, Rahul Kumar","doi":"10.1093/bfgp/elae024","DOIUrl":null,"url":null,"abstract":"<p><p>Acute myeloid leukemia (AML) is one of the leading leukemic malignancies in adults. The heterogeneity of the disease makes the diagnosis and treatment extremely difficult. With the advent of next-generation sequencing (NGS) technologies, exploration at the molecular level for the identification of biomarkers and drug targets has been the focus for the researchers to come up with novel therapies for better prognosis and survival outcomes of AML patients. However, the huge amount of data from NGS platforms requires a comprehensive AML platform to streamline literature mining efforts and save time. To facilitate this, we developed AMLdb, an interactive multi-omics platform that allows users to query, visualize, retrieve, and analyse AML related multi-omics data. AMLdb contains 86 datasets for gene expression profiles, 15 datasets for methylation profiles, CRISPR-Cas9 knockout screens of 26 AML cell lines, sensitivity of 26 AML cell lines to 288 drugs, mutations in 41 unique genes in 23 AML cell lines, and information on 41 experimentally validated biomarkers. In this study, we have reported five genes, i.e. CBFB, ENO1, IMPDH2, SEPHS2, and MYH9 identified via our analysis using AMLdb. ENO1 is uniquely identified gene which requires further investigation as a novel potential target while other reported genes have been previously confirmed as targets through experimental studies. Top of form we believe that these findings utilizing AMLdb can make it an invaluable resource to accelerate the development of effective therapies for AML and assisting the research community in advancing their understanding of AML pathogenesis. AMLdb is freely available at https://project.iith.ac.in/cgntlab/amldb.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"798-805"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in Functional Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elae024","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute myeloid leukemia (AML) is one of the leading leukemic malignancies in adults. The heterogeneity of the disease makes the diagnosis and treatment extremely difficult. With the advent of next-generation sequencing (NGS) technologies, exploration at the molecular level for the identification of biomarkers and drug targets has been the focus for the researchers to come up with novel therapies for better prognosis and survival outcomes of AML patients. However, the huge amount of data from NGS platforms requires a comprehensive AML platform to streamline literature mining efforts and save time. To facilitate this, we developed AMLdb, an interactive multi-omics platform that allows users to query, visualize, retrieve, and analyse AML related multi-omics data. AMLdb contains 86 datasets for gene expression profiles, 15 datasets for methylation profiles, CRISPR-Cas9 knockout screens of 26 AML cell lines, sensitivity of 26 AML cell lines to 288 drugs, mutations in 41 unique genes in 23 AML cell lines, and information on 41 experimentally validated biomarkers. In this study, we have reported five genes, i.e. CBFB, ENO1, IMPDH2, SEPHS2, and MYH9 identified via our analysis using AMLdb. ENO1 is uniquely identified gene which requires further investigation as a novel potential target while other reported genes have been previously confirmed as targets through experimental studies. Top of form we believe that these findings utilizing AMLdb can make it an invaluable resource to accelerate the development of effective therapies for AML and assisting the research community in advancing their understanding of AML pathogenesis. AMLdb is freely available at https://project.iith.ac.in/cgntlab/amldb.
期刊介绍:
Briefings in Functional Genomics publishes high quality peer reviewed articles that focus on the use, development or exploitation of genomic approaches, and their application to all areas of biological research. As well as exploring thematic areas where these techniques and protocols are being used, articles review the impact that these approaches have had, or are likely to have, on their field. Subjects covered by the Journal include but are not restricted to: the identification and functional characterisation of coding and non-coding features in genomes, microarray technologies, gene expression profiling, next generation sequencing, pharmacogenomics, phenomics, SNP technologies, transgenic systems, mutation screens and genotyping. Articles range in scope and depth from the introductory level to specific details of protocols and analyses, encompassing bacterial, fungal, plant, animal and human data.
The editorial board welcome the submission of review articles for publication. Essential criteria for the publication of papers is that they do not contain primary data, and that they are high quality, clearly written review articles which provide a balanced, highly informative and up to date perspective to researchers in the field of functional genomics.