Harnessing barley grains for green synthesis of gold and silver nanoparticles with antibacterial potential.

0 MATERIALS SCIENCE, MULTIDISCIPLINARY Discover nano Pub Date : 2024-06-11 DOI:10.1186/s11671-024-04042-4
Priyanka Singh, Ivan Mijakovic
{"title":"Harnessing barley grains for green synthesis of gold and silver nanoparticles with antibacterial potential.","authors":"Priyanka Singh, Ivan Mijakovic","doi":"10.1186/s11671-024-04042-4","DOIUrl":null,"url":null,"abstract":"<p><p>The continuous evolution and significance of green resources-based nanomaterials have spurred the exploration of sustainable sources for nanoparticle production. Green synthesis routes offer eco-friendly methodologies, ensuring nanoparticle stability and monodispersity, enhancing their efficiency for various applications. Notably, the thick biological corona layer surrounding nanoparticles (NPs) synthesized through green routes contributes to their unique properties. Consequently, there has been a surge in the development of NPs synthesis methods utilizing medicinal plants and diverse agricultural and waste resources. This study highlights the sustainable potential of barley grains for the synthesis of gold nanoparticles (Barley-AuNPs) and silver nanoparticles (Barley-AgNPs) as an environmentally friendly alternative, followed by NPs characterizations and their application against pathogenic bacteria: Escherichia coli UTI 89 and Pseudomonas aeruginosa PAO1. The rapid synthesis of Barley-AuNPs within 20 min and Barley-AgNPs within 30 min at 90 °C underscores the efficiency of barley as a green precursor. Characterization through advanced techniques, including SEM, TEM, EDS, AFM, DLS, FT-IR, MALDI-TOF, and sp-ICPMS, reveals the 20-25 nm size for Barley-AuNPs, while Barley-AgNPs demonstrate 2-10 nm size with spherical monodispersity. A notable contribution lies in the stability of these NPs over extended periods, attributed to a thick biological corona layer. This corona layer, which enhances stability, also influences the antimicrobial activity of Barley-AgNPs, presenting an intriguing trade-off. The antimicrobial investigations highlight the significant potential of Barley-AgNPs, with distinct minimum bactericidal concentrations (MBC) against P. aeruginosa and E. coli at 8 µg/mL. Overall, this research pioneers the use of barley grains for nanoparticle synthesis and unveils these nanoparticles' unique characteristics and potential antibacterial applications, contributing to the evolving landscape of sustainable nanotechnology.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"101"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166622/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover nano","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s11671-024-04042-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The continuous evolution and significance of green resources-based nanomaterials have spurred the exploration of sustainable sources for nanoparticle production. Green synthesis routes offer eco-friendly methodologies, ensuring nanoparticle stability and monodispersity, enhancing their efficiency for various applications. Notably, the thick biological corona layer surrounding nanoparticles (NPs) synthesized through green routes contributes to their unique properties. Consequently, there has been a surge in the development of NPs synthesis methods utilizing medicinal plants and diverse agricultural and waste resources. This study highlights the sustainable potential of barley grains for the synthesis of gold nanoparticles (Barley-AuNPs) and silver nanoparticles (Barley-AgNPs) as an environmentally friendly alternative, followed by NPs characterizations and their application against pathogenic bacteria: Escherichia coli UTI 89 and Pseudomonas aeruginosa PAO1. The rapid synthesis of Barley-AuNPs within 20 min and Barley-AgNPs within 30 min at 90 °C underscores the efficiency of barley as a green precursor. Characterization through advanced techniques, including SEM, TEM, EDS, AFM, DLS, FT-IR, MALDI-TOF, and sp-ICPMS, reveals the 20-25 nm size for Barley-AuNPs, while Barley-AgNPs demonstrate 2-10 nm size with spherical monodispersity. A notable contribution lies in the stability of these NPs over extended periods, attributed to a thick biological corona layer. This corona layer, which enhances stability, also influences the antimicrobial activity of Barley-AgNPs, presenting an intriguing trade-off. The antimicrobial investigations highlight the significant potential of Barley-AgNPs, with distinct minimum bactericidal concentrations (MBC) against P. aeruginosa and E. coli at 8 µg/mL. Overall, this research pioneers the use of barley grains for nanoparticle synthesis and unveils these nanoparticles' unique characteristics and potential antibacterial applications, contributing to the evolving landscape of sustainable nanotechnology.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用大麦粒绿色合成具有抗菌潜力的金银纳米粒子。
以绿色资源为基础的纳米材料的不断发展和重要性促使人们探索纳米粒子生产的可持续来源。绿色合成路线提供了生态友好型方法,确保了纳米粒子的稳定性和单分散性,提高了其在各种应用中的效率。值得注意的是,通过绿色合成路线合成的纳米粒子(NPs)周围厚厚的生物电晕层使其具有独特的性能。因此,利用药用植物和各种农业及废弃物资源合成 NPs 的方法得到了迅猛发展。本研究强调了大麦粒合成金纳米粒子(Barley-AuNPs)和银纳米粒子(Barley-AgNPs)作为环境友好型替代品的可持续发展潜力,随后介绍了纳米粒子的特性及其在抗病原菌方面的应用:大肠杆菌 UTI 89 和铜绿假单胞菌 PAO1。大麦-金纳米粒子在 20 分钟内快速合成,大麦-银纳米粒子在 90 °C 下 30 分钟内快速合成,这凸显了大麦作为绿色前体的高效性。通过扫描电子显微镜(SEM)、电子显微镜(TEM)、电致发光分析(EDS)、原子力显微镜(AFM)、激光粒度分析(DLS)、傅立叶变换红外光谱(FT-IR)、MALDI-TOF 和 sp-ICPMS 等先进技术进行表征,发现大麦金纳米粒子的尺寸为 20-25 纳米,而大麦银纳米粒子的尺寸为 2-10 纳米,呈球形单分散性。这些 NPs 的一个显著特点是长期稳定性,这要归功于厚厚的生物电晕层。这种电晕层在提高稳定性的同时,也影响了大麦-AgNPs 的抗菌活性,从而产生了一种耐人寻味的权衡。抗菌研究凸显了大麦-AgNPs 的巨大潜力,其对绿脓杆菌和大肠杆菌的最低杀菌浓度 (MBC) 为 8 µg/mL。总之,这项研究开创了利用大麦粒合成纳米粒子的先河,揭示了这些纳米粒子的独特特性和潜在抗菌应用,为不断发展的可持续纳米技术做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
期刊最新文献
A novel transdermal drug delivery system: drug-loaded ROS-responsive ferrocene fibers for effective photoprotective and wound healing activity. Exploitation of functionalized green nanomaterials for plant disease management. Antimicrobial efficacy of nano-particles for crop protection and sustainable agriculture. Effect of annealing temperature on the optoelectrical synapse behaviors of A-ZnO microtube. Anticandidal applications of selenium nanoparticles biosynthesized with Limosilactobacillus fermentum (OR553490).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1