The transformation of the rotational energy of a Kerr black hole

IF 3.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Classical and Quantum Gravity Pub Date : 2024-06-11 DOI:10.1088/1361-6382/ad51c2
Shu-Rui Zhang and Mikalai Prakapenia
{"title":"The transformation of the rotational energy of a Kerr black hole","authors":"Shu-Rui Zhang and Mikalai Prakapenia","doi":"10.1088/1361-6382/ad51c2","DOIUrl":null,"url":null,"abstract":"This paper analyzes the feedback of the rotational energy extraction from a Kerr black hole (BH) by the ‘ballistic method’, i.e. the test particle decay in the BH ergosphere pioneered by Roger Penrose. The focus is on the negative energy counterrotating particles (which can be massive or massless) going in towards the horizon, and the feedback on the BH irreducible mass is assessed. Generally, the change in irreducible mass is a function of the conserved quantities of the particle. For an extreme Kerr BH and in the limit , all the reduced transformable energy goes into the irreducible mass (i.e. ), resulting in high irreversibility. The amount of extracted energy from the BH using test particles is much lower than the change of transformable energy. For non-extreme Kerr BHs, the effective potential of particle motion on the equatorial plane in Kerr spacetime is analyzed, and it is demonstrated that the Penrose process can only be undergone by BHs with a dimensionless spin if the decay point coincides with the turning point. Based on that, the lower limit of the change in irreducible mass is provided as a function of the dimensionless spin of the BH. The significance of the increase in the irreducible mass of the BH during the energy extraction process is generally and concisely illustrated by introducing the concept of transformable energy of the BH. The feedback from the Penrose process on the irreducible mass demonstrates the irreversibility of energy extraction and highlights that the total amount of energy that can be extracted from a BH is less than previously anticipated.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/ad51c2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper analyzes the feedback of the rotational energy extraction from a Kerr black hole (BH) by the ‘ballistic method’, i.e. the test particle decay in the BH ergosphere pioneered by Roger Penrose. The focus is on the negative energy counterrotating particles (which can be massive or massless) going in towards the horizon, and the feedback on the BH irreducible mass is assessed. Generally, the change in irreducible mass is a function of the conserved quantities of the particle. For an extreme Kerr BH and in the limit , all the reduced transformable energy goes into the irreducible mass (i.e. ), resulting in high irreversibility. The amount of extracted energy from the BH using test particles is much lower than the change of transformable energy. For non-extreme Kerr BHs, the effective potential of particle motion on the equatorial plane in Kerr spacetime is analyzed, and it is demonstrated that the Penrose process can only be undergone by BHs with a dimensionless spin if the decay point coincides with the turning point. Based on that, the lower limit of the change in irreducible mass is provided as a function of the dimensionless spin of the BH. The significance of the increase in the irreducible mass of the BH during the energy extraction process is generally and concisely illustrated by introducing the concept of transformable energy of the BH. The feedback from the Penrose process on the irreducible mass demonstrates the irreversibility of energy extraction and highlights that the total amount of energy that can be extracted from a BH is less than previously anticipated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
克尔黑洞旋转能量的转换
本文通过 "弹道法 "分析了克尔黑洞(BH)旋转能量提取的反馈,即罗杰-彭罗斯(Roger Penrose)开创的BH极圈中的测试粒子衰变。重点是负能量反旋转粒子(可以是大质量或无质量粒子)进入地平线,并评估其对黑洞不可还原质量的反馈。一般来说,不可还原质量的变化是粒子守恒量的函数。对于极端克尔黑洞,在极限情况下,所有减少的可转化能量都会进入不可还原质量(即 ),从而导致高度不可逆。利用测试粒子从 BH 提取的能量远低于可转化能量的变化。对于非极端的克尔玻赫,分析了粒子在克尔时空中赤道面上运动的有效势能,证明只有当衰变点与转折点重合时,具有无量纲自旋的玻赫才能经历彭罗斯过程。在此基础上,提供了不可还原质量变化的下限与 BH 无量纲自旋的函数关系。通过引入玻色子可转化能量的概念,概括而简洁地说明了在能量提取过程中玻色子不可还原质量增加的意义。彭罗斯过程对不可还原质量的反馈表明了能量萃取的不可逆性,并强调了可以从一个玻色体中萃取的能量总量比之前预计的要少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Classical and Quantum Gravity
Classical and Quantum Gravity 物理-天文与天体物理
CiteScore
7.00
自引率
8.60%
发文量
301
审稿时长
2-4 weeks
期刊介绍: Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.
期刊最新文献
Towards the solution of coating loss measurements using thermoelastic-dominated substrates Dynamical system analysis in modified Galileon cosmology On the convergence of cosmographic expansions in Lemaître–Tolman–Bondi models Dynamical friction in rotating ultralight dark matter galactic cores Gauge invariant perturbations of static spatially compact LRS II spacetimes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1