Isolated Ni Atoms Enable Near-Unity CH4 Selectivity for Photothermal CO2 Hydrogenation.

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-07-31 Epub Date: 2024-06-13 DOI:10.1021/jacs.4c05873
Fazal Raziq, Chengyang Feng, Miao Hu, Shouwei Zuo, Mohammad Ziaur Rahman, Yayu Yan, Qiao-Hong Li, Jorge Gascon, Huabin Zhang
{"title":"Isolated Ni Atoms Enable Near-Unity CH<sub>4</sub> Selectivity for Photothermal CO<sub>2</sub> Hydrogenation.","authors":"Fazal Raziq, Chengyang Feng, Miao Hu, Shouwei Zuo, Mohammad Ziaur Rahman, Yayu Yan, Qiao-Hong Li, Jorge Gascon, Huabin Zhang","doi":"10.1021/jacs.4c05873","DOIUrl":null,"url":null,"abstract":"<p><p>Photothermal hydrogenation of carbon dioxide (CO<sub>2</sub>) into value-added products is an ideal solution for addressing the energy crisis and mitigating CO<sub>2</sub> emissions. However, achieving high product selectivity remains challenging due to the simultaneous occurrence of numerous competing intermediate reactions during CO<sub>2</sub> hydrogenation. We present a novel approach featuring isolated single-atom nickel (Ni) anchored onto indium oxide (In<sub>2</sub>O<sub>3</sub>) nanocrystals, serving as an effective photothermal catalyst for CO<sub>2</sub> hydrogenation into methane (CH<sub>4</sub>) with a remarkable near-unity (∼99%) selectivity. Experiments and theoretical simulations have confirmed that isolated Ni sites on the In<sub>2</sub>O<sub>3</sub> surface can effectively stabilize the intermediate products of the CO<sub>2</sub> hydrogenation reaction and reduce the transition state energy barrier, thereby changing the reaction path to achieve ultrahigh selective methanation. This study provides comprehensive insights into the design of single-atom catalysts for the highly selective photothermal catalytic hydrogenation of CO<sub>2</sub> to methane.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c05873","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photothermal hydrogenation of carbon dioxide (CO2) into value-added products is an ideal solution for addressing the energy crisis and mitigating CO2 emissions. However, achieving high product selectivity remains challenging due to the simultaneous occurrence of numerous competing intermediate reactions during CO2 hydrogenation. We present a novel approach featuring isolated single-atom nickel (Ni) anchored onto indium oxide (In2O3) nanocrystals, serving as an effective photothermal catalyst for CO2 hydrogenation into methane (CH4) with a remarkable near-unity (∼99%) selectivity. Experiments and theoretical simulations have confirmed that isolated Ni sites on the In2O3 surface can effectively stabilize the intermediate products of the CO2 hydrogenation reaction and reduce the transition state energy barrier, thereby changing the reaction path to achieve ultrahigh selective methanation. This study provides comprehensive insights into the design of single-atom catalysts for the highly selective photothermal catalytic hydrogenation of CO2 to methane.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
隔离的镍原子实现了光热二氧化碳加氢的近乎统一的 CH4 选择性。
光热氢化将二氧化碳(CO2)转化为高附加值产品是解决能源危机和减少二氧化碳排放的理想方案。然而,由于二氧化碳氢化过程中会同时发生许多相互竞争的中间反应,因此实现高产品选择性仍具有挑战性。我们提出了一种新方法,将孤立的单原子镍(Ni)锚定在氧化铟(In2O3)纳米晶体上,作为一种有效的光热催化剂,将 CO2 加氢转化为甲烷(CH4),具有显著的近乎统一(∼99%)的选择性。实验和理论模拟证实,In2O3 表面孤立的 Ni 位点能有效稳定 CO2 加氢反应的中间产物,降低过渡态能垒,从而改变反应路径,实现超高选择性甲烷化。这项研究为设计用于高选择性光热催化 CO2 加氢制甲烷的单原子催化剂提供了全面的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Expanding the Clip-and-Cleave Concept: Approaching Enantioselective C-H Hydroxylations by Copper Imine Complexes Using O2 and H2O2 as Oxidants. Ferrocenyl PNNP Ligands-Controlled Chromium Complex-Catalyzed Photocatalytic Reduction of CO2 to Formic Acid. Heterolytic C-H Activation Routes in Catalytic Dehydrogenation of Light Alkanes on Lewis Acid-Base Pairs at ZrO2 Surfaces. Tandem Targeting and Dual Aggregation of an AIEgen for Enhanced Near-Infrared Fluorescence Imaging of Tumors. Synergy of Charged Domain Walls in 2D In-Plane Polarized Ferroelectric GeS for Photocatalytic Water Splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1