Effect of Eucalyptus globulus and Ferula assafoetida essential oils and their nanoformulations on the life table parameters of Tetranychus urticae (Acari: Tetranychidae).
{"title":"Effect of Eucalyptus globulus and Ferula assafoetida essential oils and their nanoformulations on the life table parameters of Tetranychus urticae (Acari: Tetranychidae).","authors":"Moosa Saber, Batool Mokhtari","doi":"10.1007/s10493-024-00929-0","DOIUrl":null,"url":null,"abstract":"<p><p>One of the most damaging pests of agricultural crops across the globe is the two-spotted spider mite, Tetranychus urticae Koch. A wide variety of arthropods and plant pathogens can be controlled by essential oils, which are secondary metabolites produced by plants. It is possible to enhance the stability as well as the anti-pest efficiency of plant essential oils by encapsulation. Water distillation was used to extract the essential oils from Eucalyptus globulus and Ferula assafoetida. The chitosan nanoparticles were used to load both essential oils into nanoformulations. Studies were conducted on T. urticae life table characteristics under experimental circumstances to determine the sublethal impacts of essential oils and their nanoformulations. Intrinsic growth rate (r) for population exposed to E. globulus, F. assafoetida essential oils, their nanoformulations and the control were 0.1, 0.069, 0.051, 0.018 and 0.21 per day, respectively. F. assafoetida and E. globulus nanoformulations resulted the lowest fecundity compared to the other treatments. According the result of the lethal and sublethal effects of purified essential oils and nanoformulations of F. assafoetida and E. globulus, they would be recommended for controlling the two-spotted spider mites, T. urticae.</p>","PeriodicalId":12088,"journal":{"name":"Experimental and Applied Acarology","volume":" ","pages":"297-315"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and Applied Acarology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10493-024-00929-0","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
One of the most damaging pests of agricultural crops across the globe is the two-spotted spider mite, Tetranychus urticae Koch. A wide variety of arthropods and plant pathogens can be controlled by essential oils, which are secondary metabolites produced by plants. It is possible to enhance the stability as well as the anti-pest efficiency of plant essential oils by encapsulation. Water distillation was used to extract the essential oils from Eucalyptus globulus and Ferula assafoetida. The chitosan nanoparticles were used to load both essential oils into nanoformulations. Studies were conducted on T. urticae life table characteristics under experimental circumstances to determine the sublethal impacts of essential oils and their nanoformulations. Intrinsic growth rate (r) for population exposed to E. globulus, F. assafoetida essential oils, their nanoformulations and the control were 0.1, 0.069, 0.051, 0.018 and 0.21 per day, respectively. F. assafoetida and E. globulus nanoformulations resulted the lowest fecundity compared to the other treatments. According the result of the lethal and sublethal effects of purified essential oils and nanoformulations of F. assafoetida and E. globulus, they would be recommended for controlling the two-spotted spider mites, T. urticae.
期刊介绍:
Experimental and Applied Acarology publishes peer-reviewed original papers describing advances in basic and applied research on mites and ticks. Coverage encompasses all Acari, including those of environmental, agricultural, medical and veterinary importance, and all the ways in which they interact with other organisms (plants, arthropods and other animals). The subject matter draws upon a wide variety of disciplines, including evolutionary biology, ecology, epidemiology, physiology, biochemistry, toxicology, immunology, genetics, molecular biology and pest management sciences.