{"title":"[Basic MRI Study in the Imaging Direction of a Diffusion-weighted Whole Body Imaging with Background Body Signal Suppression].","authors":"Shota Katsumata, Toshiyuki Takahashi, Shuko Nishimura, Tetsuichi Hondera, Mitsuyoshi Yasuda, Kyoichi Kato","doi":"10.6009/jjrt.2024-1449","DOIUrl":null,"url":null,"abstract":"<p><p>A diffusion-weighted whole body imaging with background body signal suppression (DWIBS) is usually imaged as a whole body with Transverse (Tra). However, Tra has a large number of stations and a larger number than Coronal (Cor), so the scan time is longer. There are also drawbacks, such as signal unevenness between series. It is known that the effect of distortion is large in Cor. There is no report on it in Sagittal (Sag). Therefore, in this study, we focused on Sag and examined the imaging time, image distortion, fat suppression effect, and continuity between stations. In the examination by the phantom, the scan time was the shortest for Cor and the longest for Sag. In the strain evaluation, the effect of strain could be suppressed compared to Cor by using a rectangle field of view (FOV) in the anterior to posterior (AP) direction in Tra and Sag. There was no difference in the fat suppression effect depending on the imaging direction. Similar results were obtained in a study of 10 healthy volunteers, with Sag having the best continuity between stations.</p>","PeriodicalId":74309,"journal":{"name":"Nihon Hoshasen Gijutsu Gakkai zasshi","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nihon Hoshasen Gijutsu Gakkai zasshi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6009/jjrt.2024-1449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A diffusion-weighted whole body imaging with background body signal suppression (DWIBS) is usually imaged as a whole body with Transverse (Tra). However, Tra has a large number of stations and a larger number than Coronal (Cor), so the scan time is longer. There are also drawbacks, such as signal unevenness between series. It is known that the effect of distortion is large in Cor. There is no report on it in Sagittal (Sag). Therefore, in this study, we focused on Sag and examined the imaging time, image distortion, fat suppression effect, and continuity between stations. In the examination by the phantom, the scan time was the shortest for Cor and the longest for Sag. In the strain evaluation, the effect of strain could be suppressed compared to Cor by using a rectangle field of view (FOV) in the anterior to posterior (AP) direction in Tra and Sag. There was no difference in the fat suppression effect depending on the imaging direction. Similar results were obtained in a study of 10 healthy volunteers, with Sag having the best continuity between stations.