Spatiotemporal-response-correlation-based model predictive control of heat conduction temperature field

IF 3.3 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Journal of Process Control Pub Date : 2024-06-13 DOI:10.1016/j.jprocont.2024.103257
Guangjun Wang , Zehong Chen , Hong Chen , Zhaohui Mao
{"title":"Spatiotemporal-response-correlation-based model predictive control of heat conduction temperature field","authors":"Guangjun Wang ,&nbsp;Zehong Chen ,&nbsp;Hong Chen ,&nbsp;Zhaohui Mao","doi":"10.1016/j.jprocont.2024.103257","DOIUrl":null,"url":null,"abstract":"<div><p>In many engineering fields, controlling the transient temperature field of the heat conduction process is significant practically. For the temperature field control problem, a spatiotemporal-response-correlation-based model predictive control (STRC-MPC) method is developed. In this method, a spatiotemporal mapping eigenvector of control inputs to temperature field is determined by transient heat conduction equations. According to the correlation degree between the temporal mapping eigenvectors of different spatial points, a finite number of representative spatial points (RPs) are extracted, of which can cover the full mapping characteristic of the temperature field. Meanwhile, the predictive model of the temperature field is reduced offline to temperature predictive models of the RPs. Then, the predictive models of the RPs are applied to design a model predictive controller of the temperature field. In addition, a correlation formulation between the temperature responses of the RPs and that of the measurement points (MPs) is derived by making the control inputs as intermediate variable, and a correlation model between the predictive errors of the two kinds of points is established. Combining the correlation model and the predictive errors of the MPs, the predictive errors at the RPs are estimated and the feedback correction of the predictive model of the RPs is achieved. The STRC-MPC method is employed to control the preheating temperature field of a die casting mold by numerical simulations. The model predictive controller and the feedback correction scheme involved in the proposed control method are verified respectively.</p></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"140 ","pages":"Article 103257"},"PeriodicalIF":3.3000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152424000970","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In many engineering fields, controlling the transient temperature field of the heat conduction process is significant practically. For the temperature field control problem, a spatiotemporal-response-correlation-based model predictive control (STRC-MPC) method is developed. In this method, a spatiotemporal mapping eigenvector of control inputs to temperature field is determined by transient heat conduction equations. According to the correlation degree between the temporal mapping eigenvectors of different spatial points, a finite number of representative spatial points (RPs) are extracted, of which can cover the full mapping characteristic of the temperature field. Meanwhile, the predictive model of the temperature field is reduced offline to temperature predictive models of the RPs. Then, the predictive models of the RPs are applied to design a model predictive controller of the temperature field. In addition, a correlation formulation between the temperature responses of the RPs and that of the measurement points (MPs) is derived by making the control inputs as intermediate variable, and a correlation model between the predictive errors of the two kinds of points is established. Combining the correlation model and the predictive errors of the MPs, the predictive errors at the RPs are estimated and the feedback correction of the predictive model of the RPs is achieved. The STRC-MPC method is employed to control the preheating temperature field of a die casting mold by numerical simulations. The model predictive controller and the feedback correction scheme involved in the proposed control method are verified respectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时空响应相关性的热传导温度场模型预测控制
在许多工程领域,控制热传导过程的瞬态温度场具有重要的实际意义。针对温度场控制问题,开发了一种基于时空响应相关性的模型预测控制(STRC-MPC)方法。该方法通过瞬态热传导方程确定控制输入到温度场的时空映射特征向量。根据不同空间点的时空映射特征向量之间的相关程度,提取出一定数量的代表性空间点(RPs),这些空间点能够覆盖温度场的全部映射特征。同时,将温度场的预测模型离线还原为 RP 的温度预测模型。然后,应用 RP 的预测模型设计温度场的模型预测控制器。此外,通过将控制输入作为中间变量,得出 RP 的温度响应与测量点(MP)的温度响应之间的相关公式,并建立两种点的预测误差之间的相关模型。结合相关模型和 MP 点的预测误差,估算出 RP 点的预测误差,实现对 RP 点预测模型的反馈修正。通过数值模拟,采用 STRC-MPC 方法控制压铸模具的预热温度场。分别验证了所提控制方法中涉及的模型预测控制器和反馈修正方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Process Control
Journal of Process Control 工程技术-工程:化工
CiteScore
7.00
自引率
11.90%
发文量
159
审稿时长
74 days
期刊介绍: This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others. Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques. Topics covered include: • Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.
期刊最新文献
Safe, visualizable reinforcement learning for process control with a warm-started actor network based on PI-control A unified GPR model based on transfer learning for SOH prediction of lithium-ion batteries Control of Production-Inventory systems of perennial crop seeds Model-predictive fault-tolerant control of safety-critical processes based on dynamic safe set Numerical solution of nonlinear periodic optimal control problems using a Fourier integral pseudospectral method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1