STPDA: Leveraging spatial-temporal patterns for downstream analysis in spatial transcriptomic data

IF 2.6 4区 生物学 Q2 BIOLOGY Computational Biology and Chemistry Pub Date : 2024-06-11 DOI:10.1016/j.compbiolchem.2024.108127
Mingguang Shi , Xudong Cheng , Yulong Dai
{"title":"STPDA: Leveraging spatial-temporal patterns for downstream analysis in spatial transcriptomic data","authors":"Mingguang Shi ,&nbsp;Xudong Cheng ,&nbsp;Yulong Dai","doi":"10.1016/j.compbiolchem.2024.108127","DOIUrl":null,"url":null,"abstract":"<div><p>Spatial transcriptomics, a groundbreaking field in cellular biology, faces the challenge of effectively deciphering complex spatial-temporal gene expression patterns. Traditional data analysis methods often fail to capture the intricate nuances of this data, limiting the depth of understanding in spatial distribution and gene interactions. In response, we present Spatial-Temporal Patterns for Downstream Analysis (STPDA), a sophisticated computational framework tailored for spatial transcriptomic data analysis. STPDA leverages high-resolution mapping to bridge the gap between genomics and histopathology, offering a comprehensive perspective on the spatial dynamics of gene expression within tissues. This approach enables a view of cellular function and organization, marking a paradigm shift in our comprehension of biological systems. By employing Autoregressive Moving Average (ARMA) and Long Short-Term Memory (LSTM) models, STPDA effectively deciphers both global and local spatio-temporal dynamics in cellular environments. This integration of spatial-temporal patterns for downstream analysis offers a transformative approach to spatial transcriptomics data analysis. STPDA excels in various single-cell analytical tasks, including the identification of ligand-receptor interactions and cell type classification. Its ability to harness spatial-temporal patterns not only matches but frequently surpasses the performance of existing state-of-the-art methods. To ensure widespread usability and impact, we have encapsulated STPDA in a scalable and accessible Python package, addressing single-cell tasks through advanced spatial-temporal pattern analysis. This development promises to enhance our understanding of cellular biology, offering novel insights and therapeutic strategies, and represents a substantial advancement in the field of spatial transcriptomics.</p></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124001154","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spatial transcriptomics, a groundbreaking field in cellular biology, faces the challenge of effectively deciphering complex spatial-temporal gene expression patterns. Traditional data analysis methods often fail to capture the intricate nuances of this data, limiting the depth of understanding in spatial distribution and gene interactions. In response, we present Spatial-Temporal Patterns for Downstream Analysis (STPDA), a sophisticated computational framework tailored for spatial transcriptomic data analysis. STPDA leverages high-resolution mapping to bridge the gap between genomics and histopathology, offering a comprehensive perspective on the spatial dynamics of gene expression within tissues. This approach enables a view of cellular function and organization, marking a paradigm shift in our comprehension of biological systems. By employing Autoregressive Moving Average (ARMA) and Long Short-Term Memory (LSTM) models, STPDA effectively deciphers both global and local spatio-temporal dynamics in cellular environments. This integration of spatial-temporal patterns for downstream analysis offers a transformative approach to spatial transcriptomics data analysis. STPDA excels in various single-cell analytical tasks, including the identification of ligand-receptor interactions and cell type classification. Its ability to harness spatial-temporal patterns not only matches but frequently surpasses the performance of existing state-of-the-art methods. To ensure widespread usability and impact, we have encapsulated STPDA in a scalable and accessible Python package, addressing single-cell tasks through advanced spatial-temporal pattern analysis. This development promises to enhance our understanding of cellular biology, offering novel insights and therapeutic strategies, and represents a substantial advancement in the field of spatial transcriptomics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
STPDA:利用时空模式对空间转录组数据进行下游分析
空间转录组学是细胞生物学的一个突破性领域,它面临着有效破译复杂的时空基因表达模式的挑战。传统的数据分析方法往往无法捕捉到这些数据错综复杂的细微差别,从而限制了对空间分布和基因相互作用的深入理解。为此,我们提出了用于下游分析的空间-时间模式(STPDA),这是一个为空间转录组数据分析量身定制的复杂计算框架。STPDA 利用高分辨率图谱架起了基因组学与组织病理学之间的桥梁,为组织内基因表达的空间动态提供了一个全面的视角。通过这种方法可以了解细胞的功能和组织,标志着我们对生物系统理解的范式转变。通过采用自回归移动平均(ARMA)和长短期记忆(LSTM)模型,STPDA 能有效解读细胞环境中的全局和局部时空动态。这种整合时空模式的下游分析为空间转录组学数据分析提供了一种变革性方法。STPDA 擅长各种单细胞分析任务,包括配体-受体相互作用的鉴定和细胞类型分类。它利用空间-时间模式的能力不仅能与现有的先进方法相媲美,而且经常超越它们。为了确保广泛的可用性和影响力,我们将 STPDA 封装在一个可扩展且易于访问的 Python 软件包中,通过先进的时空模式分析来解决单细胞任务。这项开发有望增强我们对细胞生物学的理解,提供新的见解和治疗策略,是空间转录组学领域的一大进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Biology and Chemistry
Computational Biology and Chemistry 生物-计算机:跨学科应用
CiteScore
6.10
自引率
3.20%
发文量
142
审稿时长
24 days
期刊介绍: Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered. Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered. Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.
期刊最新文献
Genome-wide identification of alternative splicing related with transcription factors and splicing regulators in breast cancer stem cells responding to fasting-mimicking diet Design and characterization of defined alpha-helix mini-proteins with intrinsic cell permeability Identify the key genes and pathways of melatonin in age-dependent mice hippocampus regulation by transcriptome analysis Integrating (deep) machine learning and cheminformatics for predicting human intestinal absorption of small molecules Investigating pH-induced conformational switch in PIM-1: An integrated multi spectroscopic and MD simulation study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1