Improved breast milk proteome coverage by DIA based LC-MS/MS method

IF 3.4 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Proteomics Pub Date : 2024-06-14 DOI:10.1002/pmic.202300340
Jenni Viitaharju, Lauri Polari, Otto Kauko, Johannes Merilahti, Anne Rokka, Diana M. Toivola, Kirsi Laitinen
{"title":"Improved breast milk proteome coverage by DIA based LC-MS/MS method","authors":"Jenni Viitaharju,&nbsp;Lauri Polari,&nbsp;Otto Kauko,&nbsp;Johannes Merilahti,&nbsp;Anne Rokka,&nbsp;Diana M. Toivola,&nbsp;Kirsi Laitinen","doi":"10.1002/pmic.202300340","DOIUrl":null,"url":null,"abstract":"<p>The breast milk composition includes a multitude of bioactive factors such as viable cells, lipids and proteins. Measuring the levels of specific proteins in breast milk plasma can be challenging because of the large dynamic range of protein concentrations and the presence of interfering substances. Therefore, most proteomic studies of breast milk have been able to identify under 1000 proteins. Optimised procedures and the latest separation technologies used in milk proteome research could lead to more precise knowledge of breast milk proteome. This study (<i>n</i> = 53) utilizes three different protein quantification methods, including direct DIA, library-based DIA method and a hybrid method combining direct DIA and library-based DIA. On average we identified 2400 proteins by hybrid method. By applying these methods, we quantified body mass index (BMI) associated variation in breast milk proteomes. There were 210 significantly different proteins when comparing the breast milk proteome of obese and overweight mothers. In addition, we analysed a small cohort (<i>n</i> = 5, randomly selected from 53 samples) by high field asymmetric waveform ion mobility spectrometry (FAIMS). FAIMS coupled with the Orbitrap Fusion Lumos mass spectrometer, which led to 41.7% higher number of protein identifications compared to Q Exactive HF mass spectrometer.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pmic.202300340","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pmic.202300340","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The breast milk composition includes a multitude of bioactive factors such as viable cells, lipids and proteins. Measuring the levels of specific proteins in breast milk plasma can be challenging because of the large dynamic range of protein concentrations and the presence of interfering substances. Therefore, most proteomic studies of breast milk have been able to identify under 1000 proteins. Optimised procedures and the latest separation technologies used in milk proteome research could lead to more precise knowledge of breast milk proteome. This study (n = 53) utilizes three different protein quantification methods, including direct DIA, library-based DIA method and a hybrid method combining direct DIA and library-based DIA. On average we identified 2400 proteins by hybrid method. By applying these methods, we quantified body mass index (BMI) associated variation in breast milk proteomes. There were 210 significantly different proteins when comparing the breast milk proteome of obese and overweight mothers. In addition, we analysed a small cohort (n = 5, randomly selected from 53 samples) by high field asymmetric waveform ion mobility spectrometry (FAIMS). FAIMS coupled with the Orbitrap Fusion Lumos mass spectrometer, which led to 41.7% higher number of protein identifications compared to Q Exactive HF mass spectrometer.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 DIA 的 LC-MS/MS 方法提高了母乳蛋白质组的覆盖率。
母乳的成分包括多种生物活性因子,如活细胞、脂类和蛋白质。由于蛋白质浓度的动态范围很大,而且存在干扰物质,因此测量母乳血浆中特定蛋白质的水平具有挑战性。因此,大多数母乳蛋白质组学研究只能鉴定出不到 1000 种蛋白质。母乳蛋白质组研究中使用的优化程序和最新分离技术可以更精确地了解母乳蛋白质组。本研究(n = 53)采用了三种不同的蛋白质定量方法,包括直接 DIA 法、基于文库的 DIA 法以及一种结合了直接 DIA 法和基于文库的 DIA 法的混合方法。通过混合方法,我们平均鉴定了 2400 个蛋白质。通过应用这些方法,我们量化了母乳蛋白质组中与体重指数(BMI)相关的变化。在比较肥胖母亲和超重母亲的母乳蛋白质组时,有 210 种蛋白质存在明显差异。此外,我们还利用高场非对称波形离子迁移谱法(FAIMS)分析了一个小型群组(n = 5,从 53 个样本中随机抽取)。FAIMS 与 Orbitrap Fusion Lumos 质谱仪联用,与 Q Exactive HF 质谱仪相比,蛋白质鉴定率提高了 41.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Proteomics
Proteomics 生物-生化研究方法
CiteScore
6.30
自引率
5.90%
发文量
193
审稿时长
3 months
期刊介绍: PROTEOMICS is the premier international source for information on all aspects of applications and technologies, including software, in proteomics and other "omics". The journal includes but is not limited to proteomics, genomics, transcriptomics, metabolomics and lipidomics, and systems biology approaches. Papers describing novel applications of proteomics and integration of multi-omics data and approaches are especially welcome.
期刊最新文献
Omics Studies in CKD: Diagnostic Opportunities and Therapeutic Potential. Proteome integral solubility alteration via label-free DIA approach (PISA-DIA), game changer in drug target deconvolution. Transforming peptide hormone prediction: The role of AI in modern proteomics. Integrative Proteomic and Phosphoproteomic Profiling Reveals the Salt-Responsive Mechanisms in Two Rice Varieties (Oryza Sativa subsp. Japonica and Indica). Proteomics analysis of round and wrinkled pea (Pisum sativum L.) seeds during different development periods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1