Dynamical and combinatorial coding by MAPK p38 and NFκB in the inflammatory response of macrophages.

IF 8.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Systems Biology Pub Date : 2024-08-01 Epub Date: 2024-06-13 DOI:10.1038/s44320-024-00047-4
Stefanie Luecke, Xiaolu Guo, Katherine M Sheu, Apeksha Singh, Sarina C Lowe, Minhao Han, Jessica Diaz, Francisco Lopes, Roy Wollman, Alexander Hoffmann
{"title":"Dynamical and combinatorial coding by MAPK p38 and NFκB in the inflammatory response of macrophages.","authors":"Stefanie Luecke, Xiaolu Guo, Katherine M Sheu, Apeksha Singh, Sarina C Lowe, Minhao Han, Jessica Diaz, Francisco Lopes, Roy Wollman, Alexander Hoffmann","doi":"10.1038/s44320-024-00047-4","DOIUrl":null,"url":null,"abstract":"<p><p>Macrophages sense pathogens and orchestrate specific immune responses. Stimulus specificity is thought to be achieved through combinatorial and dynamical coding by signaling pathways. While NFκB dynamics are known to encode stimulus information, dynamical coding in other signaling pathways and their combinatorial coordination remain unclear. Here, we established live-cell microscopy to investigate how NFκB and p38 dynamics interface in stimulated macrophages. Information theory and machine learning revealed that p38 dynamics distinguish cytokine TNF from pathogen-associated molecular patterns and high doses from low, but contributed little to information-rich NFκB dynamics when both pathways are considered. This suggests that immune response genes benefit from decoding immune signaling dynamics or combinatorics, but not both. We found that the heterogeneity of the two pathways is surprisingly uncorrelated. Mathematical modeling revealed potential sources of uncorrelated heterogeneity in the branched pathway network topology and predicted it to drive gene expression variability. Indeed, genes dependent on both p38 and NFκB showed high scRNAseq variability and bimodality. These results identify combinatorial signaling as a mechanism to restrict NFκB-AND-p38-responsive inflammatory cytokine expression to few cells.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297158/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44320-024-00047-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Macrophages sense pathogens and orchestrate specific immune responses. Stimulus specificity is thought to be achieved through combinatorial and dynamical coding by signaling pathways. While NFκB dynamics are known to encode stimulus information, dynamical coding in other signaling pathways and their combinatorial coordination remain unclear. Here, we established live-cell microscopy to investigate how NFκB and p38 dynamics interface in stimulated macrophages. Information theory and machine learning revealed that p38 dynamics distinguish cytokine TNF from pathogen-associated molecular patterns and high doses from low, but contributed little to information-rich NFκB dynamics when both pathways are considered. This suggests that immune response genes benefit from decoding immune signaling dynamics or combinatorics, but not both. We found that the heterogeneity of the two pathways is surprisingly uncorrelated. Mathematical modeling revealed potential sources of uncorrelated heterogeneity in the branched pathway network topology and predicted it to drive gene expression variability. Indeed, genes dependent on both p38 and NFκB showed high scRNAseq variability and bimodality. These results identify combinatorial signaling as a mechanism to restrict NFκB-AND-p38-responsive inflammatory cytokine expression to few cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MAPK p38 和 NFκB 在巨噬细胞炎症反应中的动态和组合编码。
巨噬细胞能感知病原体并协调特定的免疫反应。刺激特异性被认为是通过信号通路的组合和动态编码实现的。虽然已知 NFκB 动态编码刺激信息,但其他信号通路的动态编码及其组合协调仍不清楚。在这里,我们利用活细胞显微镜研究了 NFκB 和 p38 动态如何在受刺激的巨噬细胞中相互作用。信息理论和机器学习显示,p38 动力学能区分细胞因子 TNF 和病原体相关分子模式,以及高剂量和低剂量,但当同时考虑这两种途径时,p38 动力学对信息丰富的 NFκB 动力学贡献甚微。这表明,免疫反应基因可以从免疫信号动力学或组合学解码中获益,但不能同时获益。我们发现,这两种途径的异质性竟然互不相关。数学建模揭示了分支通路网络拓扑中不相关异质性的潜在来源,并预测它将驱动基因表达的变异性。事实上,依赖于 p38 和 NFκB 的基因表现出较高的 scRNAseq 变异性和双模性。这些结果确定了组合信号传导是一种将 NFκB 和 p38 反应性炎症细胞因子表达限制在少数细胞内的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Systems Biology
Molecular Systems Biology 生物-生化与分子生物学
CiteScore
18.50
自引率
1.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Systems biology is a field that aims to understand complex biological systems by studying their components and how they interact. It is an integrative discipline that seeks to explain the properties and behavior of these systems. Molecular Systems Biology is a scholarly journal that publishes top-notch research in the areas of systems biology, synthetic biology, and systems medicine. It is an open access journal, meaning that its content is freely available to readers, and it is peer-reviewed to ensure the quality of the published work.
期刊最新文献
Evolution and stability of complex microbial communities driven by trade-offs. Proteome-scale characterisation of motif-based interactome rewiring by disease mutations. Somatic CpG hypermutation is associated with mismatch repair deficiency in cancer. Rescuing error control in crosslinking mass spectrometry. Time-resolved interactome profiling deconvolutes secretory protein quality control dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1