{"title":"Study of the genomics and transcriptomics profiles of male-infertility genes in human prostate cancer: an <i>in silico</i> analysis.","authors":"Farima Said Ali-Samani, Arman Shahrisa, Maryam Tahmasebi-Birgani, Mohammadreza Hajjari, Pegah Ghandil","doi":"10.1080/19396368.2024.2354305","DOIUrl":null,"url":null,"abstract":"<p><p>The World Health Organization has considered the infertility as an international public health problem. Infertility affect nearly 1 in 7 couples and male component contributes to 50% of infertility cases. There is a clear link between male infertility and some cancers such as testicular germ cell, prostate and colon cancers. Two possibilities support this finding: 1) Cancer treatments can affect the fertility factors 2) Genetic profile of infertility genes have been altered in cancer patients. Although the previously published researches have mostly focused on the first factor, no article has yet confirmed the role of genetic factors. In this in silico study, we collected the large number of genes (<i>n</i> = 17703) involved in infertility. These genes were collected from NGS panel tests of male infertility and comprehensive literature review or online data base. The Prostate Adenocarcinoma genomic and transcriptomics raw data were downloaded from the cBioPortal Cancer dataset. This included with 494 patients of Prostate Cancer with 494 mutation data, 489 with CNA and 493 with RNA seqV2 data. TCGA RNA-Seq raw data was extracted in R using the cgdsr extension package with a threshold of ±2 relative to normal samples. The observed data showed that male infertility genes have been distributed through the human genome. Among the 17703 analyzed genes of this study, the genomic profile of three genes including OR9Q1, H4C6 and PSG7 were changed approximately in 100% of (<i>n</i> = 493) patients. In most of patients (>98%), genetic alteration was related to change in gene expression. In conclusion, this study showed that the genomic and transcriptomics patterns of some male-infertility genes are notably altered in patients of prostate cancer and suggested a possible role of genetic factors in occurrence of infertility in cancer patients. Our information can be used as a source for the design of genetic database of male-infertility.</p>","PeriodicalId":22184,"journal":{"name":"Systems Biology in Reproductive Medicine","volume":"70 1","pages":"139-149"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Biology in Reproductive Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19396368.2024.2354305","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ANDROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The World Health Organization has considered the infertility as an international public health problem. Infertility affect nearly 1 in 7 couples and male component contributes to 50% of infertility cases. There is a clear link between male infertility and some cancers such as testicular germ cell, prostate and colon cancers. Two possibilities support this finding: 1) Cancer treatments can affect the fertility factors 2) Genetic profile of infertility genes have been altered in cancer patients. Although the previously published researches have mostly focused on the first factor, no article has yet confirmed the role of genetic factors. In this in silico study, we collected the large number of genes (n = 17703) involved in infertility. These genes were collected from NGS panel tests of male infertility and comprehensive literature review or online data base. The Prostate Adenocarcinoma genomic and transcriptomics raw data were downloaded from the cBioPortal Cancer dataset. This included with 494 patients of Prostate Cancer with 494 mutation data, 489 with CNA and 493 with RNA seqV2 data. TCGA RNA-Seq raw data was extracted in R using the cgdsr extension package with a threshold of ±2 relative to normal samples. The observed data showed that male infertility genes have been distributed through the human genome. Among the 17703 analyzed genes of this study, the genomic profile of three genes including OR9Q1, H4C6 and PSG7 were changed approximately in 100% of (n = 493) patients. In most of patients (>98%), genetic alteration was related to change in gene expression. In conclusion, this study showed that the genomic and transcriptomics patterns of some male-infertility genes are notably altered in patients of prostate cancer and suggested a possible role of genetic factors in occurrence of infertility in cancer patients. Our information can be used as a source for the design of genetic database of male-infertility.
期刊介绍:
Systems Biology in Reproductive Medicine, SBiRM, publishes Research Articles, Communications, Applications Notes that include protocols a Clinical Corner that includes case reports, Review Articles and Hypotheses and Letters to the Editor on human and animal reproduction. The journal will highlight the use of systems approaches including genomic, cellular, proteomic, metabolomic, bioinformatic, molecular, and biochemical, to address fundamental questions in reproductive biology, reproductive medicine, and translational research. The journal publishes research involving human and animal gametes, stem cells, developmental biology and toxicology, and clinical care in reproductive medicine. Specific areas of interest to the journal include: male factor infertility and germ cell biology, reproductive technologies (gamete micro-manipulation and cryopreservation, in vitro fertilization/embryo transfer (IVF/ET) and contraception. Research that is directed towards developing new or enhanced technologies for clinical medicine or scientific research in reproduction is of significant interest to the journal.