Artificial intelligence enables unified analysis of historical and landscape influences on genetic diversity

IF 3.6 1区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Phylogenetics and Evolution Pub Date : 2024-06-12 DOI:10.1016/j.ympev.2024.108116
Emanuel M. Fonseca , Bryan C. Carstens
{"title":"Artificial intelligence enables unified analysis of historical and landscape influences on genetic diversity","authors":"Emanuel M. Fonseca ,&nbsp;Bryan C. Carstens","doi":"10.1016/j.ympev.2024.108116","DOIUrl":null,"url":null,"abstract":"<div><p>While genetic variation in any species is potentially shaped by a range of processes, phylogeography and landscape genetics are largely concerned with inferring how environmental conditions and landscape features impact neutral intraspecific diversity. However, even as both disciplines have come to utilize SNP data over the last decades, analytical approaches have remained for the most part focused on either broad-scale inferences of historical processes (phylogeography) or on more localized inferences about environmental and/or landscape features (landscape genetics). Here we demonstrate that an artificial intelligence model-based analytical framework can consider both deeper historical factors and landscape-level processes in an integrated analysis. We implement this framework using data collected from two Brazilian anurans, the Brazilian sibilator frog (<em>Leptodactylus troglodytes</em>) and granular toad (<em>Rhinella granulosa</em>). Our results indicate that historical demographic processes shape most the genetic variation in the sibulator frog, while landscape processes primarily influence variation in the granular toad. The machine learning framework used here allows both historical and landscape processes to be considered equally, rather than requiring researchers to make an <em>a priori</em> decision about which factors are important.</p></div>","PeriodicalId":56109,"journal":{"name":"Molecular Phylogenetics and Evolution","volume":"198 ","pages":"Article 108116"},"PeriodicalIF":3.6000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Phylogenetics and Evolution","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1055790324001088","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

While genetic variation in any species is potentially shaped by a range of processes, phylogeography and landscape genetics are largely concerned with inferring how environmental conditions and landscape features impact neutral intraspecific diversity. However, even as both disciplines have come to utilize SNP data over the last decades, analytical approaches have remained for the most part focused on either broad-scale inferences of historical processes (phylogeography) or on more localized inferences about environmental and/or landscape features (landscape genetics). Here we demonstrate that an artificial intelligence model-based analytical framework can consider both deeper historical factors and landscape-level processes in an integrated analysis. We implement this framework using data collected from two Brazilian anurans, the Brazilian sibilator frog (Leptodactylus troglodytes) and granular toad (Rhinella granulosa). Our results indicate that historical demographic processes shape most the genetic variation in the sibulator frog, while landscape processes primarily influence variation in the granular toad. The machine learning framework used here allows both historical and landscape processes to be considered equally, rather than requiring researchers to make an a priori decision about which factors are important.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能可对遗传多样性的历史和景观影响进行统一分析。
虽然任何物种的遗传变异都可能受到一系列过程的影响,但系统地理学和景观遗传学主要关注的是推断环境条件和景观特征如何影响中性的种内多样性。然而,即使这两个学科在过去几十年中都开始利用 SNP 数据,分析方法在很大程度上仍然集中在对历史进程的大范围推断(系统地理学)或对环境和/或景观特征的局部推断(景观遗传学)上。在这里,我们证明了基于人工智能模型的分析框架可以在综合分析中同时考虑更深层次的历史因素和景观层面的过程。我们利用从两种巴西无尾类动物--巴西咝蛙(Leptodactylus troglodytes)和颗粒蟾蜍(Rhinella granulosa)--收集到的数据实施了这一框架。我们的研究结果表明,历史人口统计过程决定了箭蛙的大部分遗传变异,而景观过程则主要影响颗粒蟾蜍的变异。这里使用的机器学习框架允许同时考虑历史和景观过程,而不是要求研究人员先验地决定哪些因素是重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Phylogenetics and Evolution
Molecular Phylogenetics and Evolution 生物-进化生物学
CiteScore
7.50
自引率
7.30%
发文量
249
审稿时长
7.5 months
期刊介绍: Molecular Phylogenetics and Evolution is dedicated to bringing Darwin''s dream within grasp - to "have fairly true genealogical trees of each great kingdom of Nature." The journal provides a forum for molecular studies that advance our understanding of phylogeny and evolution, further the development of phylogenetically more accurate taxonomic classifications, and ultimately bring a unified classification for all the ramifying lines of life. Phylogeographic studies will be considered for publication if they offer EXCEPTIONAL theoretical or empirical advances.
期刊最新文献
Gondwanan relic or recent arrival? The biogeographic origins and systematics of Australian tarantulas. Species delimitation and historical biogeography of Sturisoma Swainson, 1838 (Loricariidae: Loricariinae): Hidden diversity along the Amazon River. Forget-me-not phylogenomics: Improving the resolution and taxonomy of a rapid island and mountain radiation in Aotearoa New Zealand (Myosotis; Boraginaceae). Taken to extremes: Loss of plastid rpl32 in Streptophyta and Cuscuta's unconventional solution for its replacement. Phylogenetic origin of dioecious Callicarpa (Lamiaceae) species endemic to the Ogasawara Islands revealed by chloroplast and nuclear whole genome analyses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1