A Stacking Framework for Online Locational Marginal Price Prediction Considering Concept Drift

Hanning Mi;Qingxin Li;Ming Shi;Sijie Chen;Yutong Li;Yiyan Li;Zheng Yan
{"title":"A Stacking Framework for Online Locational Marginal Price Prediction Considering Concept Drift","authors":"Hanning Mi;Qingxin Li;Ming Shi;Sijie Chen;Yutong Li;Yiyan Li;Zheng Yan","doi":"10.1109/TEMPR.2024.3386127","DOIUrl":null,"url":null,"abstract":"Concept drift means the statistical properties of the variable that a predictor is predicting change over time in unforeseen ways. Existing research solves concept drift in the locational marginal price (LMP) prediction process by updating predictors in online approaches. However, new data is indiscriminately utilized to update predictors in these methods. The new property changes can not be accurately captured when concept drift occurs. This paper proposes a stacking framework for online LMP prediction considering the concept drift phenomenon. Long short-term memory networks and graph attention networks are selected as the base predictors to capture the spatio-temporal dependencies in LMPs. When concept drift occurs, data with drift selected by the adaptive windowing algorithm is used to update the stacked predictor. Numerical results based on real data from Australian Energy Market Operator and Midcontinent Independent System Operator validate the effectiveness of the proposed framework. The comparative experiments prove that attempts to change or simplify the proposed framework can undermine prediction accuracy.","PeriodicalId":100639,"journal":{"name":"IEEE Transactions on Energy Markets, Policy and Regulation","volume":"2 2","pages":"254-264"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Energy Markets, Policy and Regulation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10494513/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Concept drift means the statistical properties of the variable that a predictor is predicting change over time in unforeseen ways. Existing research solves concept drift in the locational marginal price (LMP) prediction process by updating predictors in online approaches. However, new data is indiscriminately utilized to update predictors in these methods. The new property changes can not be accurately captured when concept drift occurs. This paper proposes a stacking framework for online LMP prediction considering the concept drift phenomenon. Long short-term memory networks and graph attention networks are selected as the base predictors to capture the spatio-temporal dependencies in LMPs. When concept drift occurs, data with drift selected by the adaptive windowing algorithm is used to update the stacked predictor. Numerical results based on real data from Australian Energy Market Operator and Midcontinent Independent System Operator validate the effectiveness of the proposed framework. The comparative experiments prove that attempts to change or simplify the proposed framework can undermine prediction accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑概念漂移的在线位置边际价格预测堆叠框架
概念漂移是指预测因子所预测变量的统计属性会随着时间的推移发生不可预见的变化。现有研究通过在线方法更新预测器来解决本地边际价格(LMP)预测过程中的概念漂移问题。然而,在这些方法中,新数据被不加区分地用于更新预测器。当概念漂移发生时,无法准确捕捉新的属性变化。考虑到概念漂移现象,本文提出了一种用于在线 LMP 预测的堆叠框架。本文选择了长短期记忆网络和图注意网络作为基础预测器,以捕捉 LMP 中的时空依赖关系。当概念漂移发生时,使用自适应窗口算法选择的漂移数据来更新堆叠预测器。基于澳大利亚能源市场运营商和中洲独立系统运营商真实数据的数值结果验证了所提框架的有效性。对比实验证明,试图改变或简化所提出的框架会损害预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Transactions on Energy Markets, Policy, and Regulation Information for Authors Blank Page IEEE Power & Energy Society Information Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1