Development of spontaneous recurrent seizures accompanied with increased rates of interictal spikes and decreased hippocampal delta and theta activities following extended kindling in mice
Hongmei Song , Bryan Mah , Yuqing Sun , Nancy Aloysius , Yang Bai , Liang Zhang
{"title":"Development of spontaneous recurrent seizures accompanied with increased rates of interictal spikes and decreased hippocampal delta and theta activities following extended kindling in mice","authors":"Hongmei Song , Bryan Mah , Yuqing Sun , Nancy Aloysius , Yang Bai , Liang Zhang","doi":"10.1016/j.expneurol.2024.114860","DOIUrl":null,"url":null,"abstract":"<div><p>Interictal epileptiform discharges refer to aberrant brain electrographic signals between seizures and feature intermittent interictal spikes (ISs), sharp waves, and/or abnormal rhythms. Recognition of these epileptiform activities by electroencephalographic (EEG) examinations greatly aids epilepsy diagnosis and localization of the seizure onset zone. ISs are a major form of interictal epileptiform discharges recognized in animal models of epilepsy. Progressive changes in IS waveforms, IS rates, and/or associated fast ripple oscillations have been shown to precede the development of spontaneous recurrent seizures (SRS) in various animal models. IS expressions in the kindling model of epilepsy have been demonstrated but IS changes during the course of SRS development in extended kindled animals remain to be detailed. We hence addressed this issue using a mouse model of kindling-induced SRS. Adult C57 black mice received twice daily hippocampal stimulations until SRS occurrence, with 24-h EEG monitoring performed following 50, 80, and ≥ 100 stimulations and after observation of SRS. In the stimulated hippocampus, increases in spontaneous ISs rates, but not in IS waveforms nor IS-associated fast ripples, along with decreased frequencies of hippocampal delta and theta rhythms, were observed before SRS onset. Comparable increases in IS rates were further observed in the unstimulated hippocampus, piriform cortex, and entorhinal cortex, but not in the unstimulated parietal cortex and dorsomedial thalamus. These data provide original evidence suggesting that increases in hippocampal IS rates, together with reductions in hippocampal delta and theta rhythms are closely associated with development of SRS in a rodent kindling model.</p></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0014488624001869/pdfft?md5=982751df6e5ab0fd9a787cf26498c9df&pid=1-s2.0-S0014488624001869-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014488624001869","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Interictal epileptiform discharges refer to aberrant brain electrographic signals between seizures and feature intermittent interictal spikes (ISs), sharp waves, and/or abnormal rhythms. Recognition of these epileptiform activities by electroencephalographic (EEG) examinations greatly aids epilepsy diagnosis and localization of the seizure onset zone. ISs are a major form of interictal epileptiform discharges recognized in animal models of epilepsy. Progressive changes in IS waveforms, IS rates, and/or associated fast ripple oscillations have been shown to precede the development of spontaneous recurrent seizures (SRS) in various animal models. IS expressions in the kindling model of epilepsy have been demonstrated but IS changes during the course of SRS development in extended kindled animals remain to be detailed. We hence addressed this issue using a mouse model of kindling-induced SRS. Adult C57 black mice received twice daily hippocampal stimulations until SRS occurrence, with 24-h EEG monitoring performed following 50, 80, and ≥ 100 stimulations and after observation of SRS. In the stimulated hippocampus, increases in spontaneous ISs rates, but not in IS waveforms nor IS-associated fast ripples, along with decreased frequencies of hippocampal delta and theta rhythms, were observed before SRS onset. Comparable increases in IS rates were further observed in the unstimulated hippocampus, piriform cortex, and entorhinal cortex, but not in the unstimulated parietal cortex and dorsomedial thalamus. These data provide original evidence suggesting that increases in hippocampal IS rates, together with reductions in hippocampal delta and theta rhythms are closely associated with development of SRS in a rodent kindling model.
期刊介绍:
Experimental Neurology, a Journal of Neuroscience Research, publishes original research in neuroscience with a particular emphasis on novel findings in neural development, regeneration, plasticity and transplantation. The journal has focused on research concerning basic mechanisms underlying neurological disorders.