{"title":"Identify and mitigate bias in electronic phenotyping: A comprehensive study from computational perspective","authors":"Sirui Ding , Shenghan Zhang , Xia Hu , Na Zou","doi":"10.1016/j.jbi.2024.104671","DOIUrl":null,"url":null,"abstract":"<div><p>Electronic phenotyping is a fundamental task that identifies the special group of patients, which plays an important role in precision medicine in the era of digital health. Phenotyping provides real-world evidence for other related biomedical research and clinical tasks, e.g., disease diagnosis, drug development, and clinical trials, etc. With the development of electronic health records, the performance of electronic phenotyping has been significantly boosted by advanced machine learning techniques. In the healthcare domain, precision and fairness are both essential aspects that should be taken into consideration. However, most related efforts are put into designing phenotyping models with higher accuracy. Few attention is put on the fairness perspective of phenotyping. The neglection of bias in phenotyping leads to subgroups of patients being underrepresented which will further affect the following healthcare activities such as patient recruitment in clinical trials. In this work, we are motivated to bridge this gap through a comprehensive experimental study to identify the bias existing in electronic phenotyping models and evaluate the widely-used debiasing methods’ performance on these models. We choose pneumonia and sepsis as our phenotyping target diseases. We benchmark 9 kinds of electronic phenotyping methods spanning from rule-based to data-driven methods. Meanwhile, we evaluate the performance of the 5 bias mitigation strategies covering pre-processing, in-processing, and post-processing. Through the extensive experiments, we summarize several insightful findings from the bias identified in the phenotyping and key points of the bias mitigation strategies in phenotyping.</p></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"156 ","pages":"Article 104671"},"PeriodicalIF":4.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046424000893","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Electronic phenotyping is a fundamental task that identifies the special group of patients, which plays an important role in precision medicine in the era of digital health. Phenotyping provides real-world evidence for other related biomedical research and clinical tasks, e.g., disease diagnosis, drug development, and clinical trials, etc. With the development of electronic health records, the performance of electronic phenotyping has been significantly boosted by advanced machine learning techniques. In the healthcare domain, precision and fairness are both essential aspects that should be taken into consideration. However, most related efforts are put into designing phenotyping models with higher accuracy. Few attention is put on the fairness perspective of phenotyping. The neglection of bias in phenotyping leads to subgroups of patients being underrepresented which will further affect the following healthcare activities such as patient recruitment in clinical trials. In this work, we are motivated to bridge this gap through a comprehensive experimental study to identify the bias existing in electronic phenotyping models and evaluate the widely-used debiasing methods’ performance on these models. We choose pneumonia and sepsis as our phenotyping target diseases. We benchmark 9 kinds of electronic phenotyping methods spanning from rule-based to data-driven methods. Meanwhile, we evaluate the performance of the 5 bias mitigation strategies covering pre-processing, in-processing, and post-processing. Through the extensive experiments, we summarize several insightful findings from the bias identified in the phenotyping and key points of the bias mitigation strategies in phenotyping.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.