Expanding the Plant Virome: Umbra-Like Viruses Use Host Proteins for Movement.

IF 8.1 1区 医学 Q1 VIROLOGY Annual Review of Virology Pub Date : 2024-09-01 Epub Date: 2024-08-30 DOI:10.1146/annurev-virology-111821-122718
Anne E Simon, Diego F Quito-Avila, Sayanta Bera
{"title":"Expanding the Plant Virome: Umbra-Like Viruses Use Host Proteins for Movement.","authors":"Anne E Simon, Diego F Quito-Avila, Sayanta Bera","doi":"10.1146/annurev-virology-111821-122718","DOIUrl":null,"url":null,"abstract":"<p><p>Before the very recent discovery of umbra-like viruses (ULVs), the signature defining feature of all plant RNA viruses was the encoding of specialized RNA-binding movement proteins (MPs) for transiting their RNA genomes through gated plasmodesmata to establish systemic infections. The vast majority of ULVs share umbravirus-like RNA-dependent RNA polymerases and 3'-terminal structures, but they differ by not encoding cell-to-cell and long-distance MPs and by not relying on a helper virus for <i>trans</i>-encapsidation and plant-to-plant transmission. The recent finding that two groups of ULVs do not necessarily encode MPs is expanding our understanding of the minimum requirements for modern plant RNA viruses. ULV CY1 from citrus uses host protein PHLOEM PROTEIN 2 (PP2) for systemic movement, and related ULVs encode a capsid protein, thereby providing an explanation for the lack of helper viruses present in many ULV-infected plants. ULVs thus resemble the first viruses that infected plants, which were likely deposited from feeding organisms and would have similarly required the use of host proteins such as PP2 to exit initially infected cells.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":" ","pages":"283-308"},"PeriodicalIF":8.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-virology-111821-122718","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Before the very recent discovery of umbra-like viruses (ULVs), the signature defining feature of all plant RNA viruses was the encoding of specialized RNA-binding movement proteins (MPs) for transiting their RNA genomes through gated plasmodesmata to establish systemic infections. The vast majority of ULVs share umbravirus-like RNA-dependent RNA polymerases and 3'-terminal structures, but they differ by not encoding cell-to-cell and long-distance MPs and by not relying on a helper virus for trans-encapsidation and plant-to-plant transmission. The recent finding that two groups of ULVs do not necessarily encode MPs is expanding our understanding of the minimum requirements for modern plant RNA viruses. ULV CY1 from citrus uses host protein PHLOEM PROTEIN 2 (PP2) for systemic movement, and related ULVs encode a capsid protein, thereby providing an explanation for the lack of helper viruses present in many ULV-infected plants. ULVs thus resemble the first viruses that infected plants, which were likely deposited from feeding organisms and would have similarly required the use of host proteins such as PP2 to exit initially infected cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扩展植物病毒体:类伞状病毒利用宿主蛋白质移动
在最近发现类伞形病毒(ULVs)之前,所有植物 RNA 病毒的标志性特征都是编码专门的 RNA 结合运动蛋白(MPs),通过门控质膜传递 RNA 基因组,建立系统感染。绝大多数超低病毒都具有类似伞状病毒的 RNA 依赖性 RNA 聚合酶和 3'- 末端结构,但它们的不同之处在于不编码细胞间和远距离 MP,也不依赖辅助病毒进行反包囊化和植物间传播。最近发现两类超低病毒不一定编码 MP,这拓展了我们对现代植物 RNA 病毒最低要求的认识。柑橘中的 ULV CY1 利用宿主蛋白 PHLOEM PROTEIN 2(PP2)进行系统运动,相关的 ULV 编码一种噬菌体蛋白,从而为许多 ULV 感染植物中缺乏辅助病毒提供了解释。因此,超低容量病毒与最早感染植物的病毒很相似,它们很可能是从进食生物体中沉积下来的,同样需要使用 PP2 等宿主蛋白才能从最初感染的细胞中排出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
19.40
自引率
0.90%
发文量
28
期刊介绍: The Annual Review of Virology serves as a conduit for disseminating thrilling advancements in our comprehension of viruses spanning animals, plants, bacteria, archaea, fungi, and protozoa. Its reviews illuminate novel concepts and trajectories in basic virology, elucidating viral disease mechanisms, exploring virus-host interactions, and scrutinizing cellular and immune responses to virus infection. These reviews underscore the exceptional capacity of viruses as potent probes for investigating cellular function.
期刊最新文献
Bacteriophage T4 as a Protein-Based, Adjuvant- and Needle-Free, Mucosal Pandemic Vaccine Design Platform. Embracing Complexity: What Novel Sequencing Methods Are Teaching Us About Herpesvirus Genomic Diversity. From Entry to the Nucleus: How Retroviruses Commute. The Cold War and Phage Therapy: How Geopolitics Stalled Development of Viruses as Antibacterials. The Molecular Maze of Potyviral and Host Protein Interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1