Development of phenyl-urea-based small molecules that target penicillin-binding protein 4

IF 3.2 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Chemical Biology & Drug Design Pub Date : 2024-06-14 DOI:10.1111/cbdd.14569
Vijay S. Gondil, Hailey S. Butman, Mikaeel Young, Danica J. Walsh, Yogesh Narkhede, Michael J. Zeiler, Andrew H. Crow, Morgan E. Carpenter, Aashay Mardikar, Roberta J. Melander, Olaf Wiest, Paul M. Dunman, Christian Melander
{"title":"Development of phenyl-urea-based small molecules that target penicillin-binding protein 4","authors":"Vijay S. Gondil,&nbsp;Hailey S. Butman,&nbsp;Mikaeel Young,&nbsp;Danica J. Walsh,&nbsp;Yogesh Narkhede,&nbsp;Michael J. Zeiler,&nbsp;Andrew H. Crow,&nbsp;Morgan E. Carpenter,&nbsp;Aashay Mardikar,&nbsp;Roberta J. Melander,&nbsp;Olaf Wiest,&nbsp;Paul M. Dunman,&nbsp;Christian Melander","doi":"10.1111/cbdd.14569","DOIUrl":null,"url":null,"abstract":"<p><i>Staphylococcus aureus</i> has the ability to invade cortical bone osteocyte lacuno-canalicular networks (OLCNs) and cause osteomyelitis. It was recently established that the cell wall transpeptidase, penicillin-binding protein 4 (PBP4), is crucial for this function, with <i>pbp4</i> deletion strains unable to invade OLCNs and cause bone pathogenesis in a murine model of <i>S</i>. <i>aureus</i> osteomyelitis. Moreover, PBP4 has recently been found to modulate <i>S</i>. <i>aureus</i> resistance to β-lactam antibiotics. As such, small molecule inhibitors of <i>S</i>. <i>aureus</i> PBP4 may represent dual functional antimicrobial agents that limit osteomyelitis and/or reverse antibiotic resistance. A high throughput screen recently revealed that the phenyl-urea <b>1</b> targets PBP4. Herein, we describe a structure–activity relationship (SAR) study on <b>1.</b> Leveraging in silico docking and modeling, a set of analogs was synthesized and assessed for PBP4 inhibitory activities. Results revealed a preliminary SAR and identified lead compounds with enhanced binding to PBP4, more potent antibiotic resistance reversal, and diminished PBP4 cell wall transpeptidase activity in comparison to <b>1</b>.</p>","PeriodicalId":143,"journal":{"name":"Chemical Biology & Drug Design","volume":"103 6","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Biology & Drug Design","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.14569","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Staphylococcus aureus has the ability to invade cortical bone osteocyte lacuno-canalicular networks (OLCNs) and cause osteomyelitis. It was recently established that the cell wall transpeptidase, penicillin-binding protein 4 (PBP4), is crucial for this function, with pbp4 deletion strains unable to invade OLCNs and cause bone pathogenesis in a murine model of S. aureus osteomyelitis. Moreover, PBP4 has recently been found to modulate S. aureus resistance to β-lactam antibiotics. As such, small molecule inhibitors of S. aureus PBP4 may represent dual functional antimicrobial agents that limit osteomyelitis and/or reverse antibiotic resistance. A high throughput screen recently revealed that the phenyl-urea 1 targets PBP4. Herein, we describe a structure–activity relationship (SAR) study on 1. Leveraging in silico docking and modeling, a set of analogs was synthesized and assessed for PBP4 inhibitory activities. Results revealed a preliminary SAR and identified lead compounds with enhanced binding to PBP4, more potent antibiotic resistance reversal, and diminished PBP4 cell wall transpeptidase activity in comparison to 1.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发以青霉素结合蛋白 4 为靶标的苯基脲基小分子。
金黄色葡萄球菌能够侵入皮质骨的骨细胞裂隙-髓鞘网络(OLCN)并引起骨髓炎。最近研究发现,细胞壁转肽酶--青霉素结合蛋白 4(PBP4)对这一功能至关重要,在金黄色葡萄球菌骨髓炎小鼠模型中,PBP4 缺失株无法侵入 OLCNs 并导致骨发病。此外,最近还发现 PBP4 可调节金黄色葡萄球菌对β-内酰胺类抗生素的耐药性。因此,金黄色葡萄球菌 PBP4 的小分子抑制剂可能是限制骨髓炎和/或逆转抗生素耐药性的双重功能抗菌剂。最近的一项高通量筛选发现,苯基脲 1 以 PBP4 为靶标。在此,我们描述了对 1 的结构-活性关系 (SAR) 研究。利用硅学对接和建模,我们合成了一组类似物,并评估了它们对 PBP4 的抑制活性。结果显示,与 1 相比,初步的 SAR 和鉴定出的先导化合物与 PBP4 的结合力更强、抗生素耐药性逆转作用更强、PBP4 细胞壁转肽酶活性更弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Biology & Drug Design
Chemical Biology & Drug Design 医学-生化与分子生物学
CiteScore
5.10
自引率
3.30%
发文量
164
审稿时长
4.4 months
期刊介绍: Chemical Biology & Drug Design is a peer-reviewed scientific journal that is dedicated to the advancement of innovative science, technology and medicine with a focus on the multidisciplinary fields of chemical biology and drug design. It is the aim of Chemical Biology & Drug Design to capture significant research and drug discovery that highlights new concepts, insight and new findings within the scope of chemical biology and drug design.
期刊最新文献
Novel Hydrazide-Hydrazones Bearing a Benzimidazole Ring: Design, Synthesis, and Evaluation of Inhibitor Properties Against CA I and CA II Isozymes Cover Image Edaravone Ameliorate Inflammation in Vitamin D3 and High Fat Diet Induced Atherosclerosis in Rat via Alteration of Inflammatory Pathway and Gut Microbiota Herbacetin Inhibits Human Fructose 1,6-Bisphosphatase Among a Panel of Chromone Derivatives and Pyrazoles, Demonstrating Positive Effects on Insulin-Resistant HepG2 Cells Innovative Photoprotection Strategy: Development of 2-(Benzoxazol-2-Yl)[(2-Hydroxynaphthyl)Diazenyl] Phenol Derivatives for Comprehensive Absorption of UVB, UVA, and Blue Light
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1