Polyaniline layered N-doped carbon-coated iron oxide nanocapsules for extremely active Li-ion battery anode and oxygen evolution reaction

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Carbon Pub Date : 2024-06-06 DOI:10.1016/j.carbon.2024.119308
Ashok Kumar Kakarla, Hari Bandi, R. Shanthappa, Wasim Akram Syed, Tian Wang, Jae Su Yu
{"title":"Polyaniline layered N-doped carbon-coated iron oxide nanocapsules for extremely active Li-ion battery anode and oxygen evolution reaction","authors":"Ashok Kumar Kakarla,&nbsp;Hari Bandi,&nbsp;R. Shanthappa,&nbsp;Wasim Akram Syed,&nbsp;Tian Wang,&nbsp;Jae Su Yu","doi":"10.1016/j.carbon.2024.119308","DOIUrl":null,"url":null,"abstract":"<div><p>We report the effective synthesis of polyaniline (PANi)-layered nitrogen-doped carbon-coated Fe<sub>3</sub>O<sub>4</sub> (FNC@PANi) nanocapsules (NCs) for electrocatalysis of oxygen evolution reaction (OER) as well as anode material for lithium (Li)-ion batteries (LIBs) via a simple hydrothermal method and oxidative polymerization technique. The prepared FNC@PANi NCs revealed a dual core-shell structure, in which an intermediate carbon layer allowed excellent electrical conduction between the Fe<sub>3</sub>O<sub>4</sub> NCs and PANi. The dual core-shell structure also allowed the Fe<sub>3</sub>O<sub>4</sub> NCs to expand freely during the Li-ion insertion/extraction and OER processes without breaking the outer layer, thus providing a high surface area (147.85 m<sup>2</sup> g<sup>−1</sup>) and enhanced electrical conductivity. These properties facilitate the application of the dual core-shell FNC@PANi NCs as an advanced electrode material for LIBs, delivering a high reversible specific capacity of 1556.48 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup>, excellent rate performance (896.96 mAh g<sup>−1</sup> at 1 A g<sup>−1</sup>), and durable cycling life (680.12 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup> for 3000 cycles). The dual core-shell FNC@PANi NCs exhibited high electrocatalytic activity in the OER, with a small Tafel slope of 108.7 mV dec<sup>−1</sup> owing to synergistic effects between the copious active sites of the Fe<sub>3</sub>O<sub>4</sub> NCs and the carbon core-shell structure and a modest overpotential of 219 mV at 10 mA cm<sup>−2</sup>. The electrodes showed excellent stability over 10 h, as determined by chronopotentiometry at 10 mA cm<sup>−1</sup>. The resultant dual-core-shell FNC@PANi NCs are efficient iron-oxide-based electrode materials for LIBs and OER electrocatalysts.</p></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000862232400527X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We report the effective synthesis of polyaniline (PANi)-layered nitrogen-doped carbon-coated Fe3O4 (FNC@PANi) nanocapsules (NCs) for electrocatalysis of oxygen evolution reaction (OER) as well as anode material for lithium (Li)-ion batteries (LIBs) via a simple hydrothermal method and oxidative polymerization technique. The prepared FNC@PANi NCs revealed a dual core-shell structure, in which an intermediate carbon layer allowed excellent electrical conduction between the Fe3O4 NCs and PANi. The dual core-shell structure also allowed the Fe3O4 NCs to expand freely during the Li-ion insertion/extraction and OER processes without breaking the outer layer, thus providing a high surface area (147.85 m2 g−1) and enhanced electrical conductivity. These properties facilitate the application of the dual core-shell FNC@PANi NCs as an advanced electrode material for LIBs, delivering a high reversible specific capacity of 1556.48 mAh g−1 at 0.1 A g−1, excellent rate performance (896.96 mAh g−1 at 1 A g−1), and durable cycling life (680.12 mAh g−1 at 5 A g−1 for 3000 cycles). The dual core-shell FNC@PANi NCs exhibited high electrocatalytic activity in the OER, with a small Tafel slope of 108.7 mV dec−1 owing to synergistic effects between the copious active sites of the Fe3O4 NCs and the carbon core-shell structure and a modest overpotential of 219 mV at 10 mA cm−2. The electrodes showed excellent stability over 10 h, as determined by chronopotentiometry at 10 mA cm−1. The resultant dual-core-shell FNC@PANi NCs are efficient iron-oxide-based electrode materials for LIBs and OER electrocatalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于极活性锂离子电池阳极和氧进化反应的聚苯胺层状 N-掺杂碳包覆氧化铁纳米胶囊
我们报告了通过简单的水热法和氧化聚合技术有效合成了聚苯胺(PANi)层氮掺杂碳包覆 Fe3O4(FNC@PANi)纳米囊(NCs),用于氧进化反应(OER)的电催化以及锂离子电池(LIBs)的负极材料。制备的 FNC@PANi NCs 具有双核壳结构,其中的中间碳层使 Fe3O4 NCs 和 PANi 之间具有良好的导电性。双核壳结构还允许 Fe3O4 NCs 在锂离子插入/提取和 OER 过程中自由膨胀,而不会破坏外层,从而提供了高表面积(147.85 m2 g-1)和增强的导电性。这些特性促进了双核壳 FNC@PANi NCs 作为锂离子电池先进电极材料的应用,在 0.1 A g-1 的条件下可提供 1556.48 mAh g-1 的高可逆比容量、优异的速率性能(在 1 A g-1 的条件下为 896.96 mAh g-1)和持久的循环寿命(在 5 A g-1 的条件下为 680.12 mAh g-1,循环 3000 次)。双核壳 FNC@PANi NCs 在 OER 中表现出很高的电催化活性,由于 Fe3O4 NCs 的大量活性位点和碳核壳结构之间的协同效应,Tafel 斜率很小,为 108.7 mV dec-1,在 10 mA cm-2 时的过电位为 219 mV。根据 10 mA cm-1 下的计时电位测定法,电极在 10 小时内表现出极佳的稳定性。由此产生的双核壳 FNC@PANi NCs 是用于 LIB 和 OER 电催化剂的高效氧化铁基电极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
期刊最新文献
Redox-active hydrogel electrolytes for carbon-based flexible supercapacitors over a wide temperature range New insights into the role of nitrogen doping in microporous carbon on the capacitive charge storage mechanism: from ab initio to machine learning accelerated molecular dynamics Mechanics of microblister tests in 2D materials accounting for frictional slippage Controllable preparation of carbon nanofiber membranes for enhanced flexibility and permeability Copper molybdenum sulfide coupled with multi-walled carbon nanotube nanocomposite for robust water splitting process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1