Through-the-wall object reconstruction via reinforcement learning

IF 1.4 Q2 MATHEMATICS, APPLIED Results in Applied Mathematics Pub Date : 2024-06-13 DOI:10.1016/j.rinam.2024.100465
Daniel Pomerico, Aihua Wood, Philip Cho
{"title":"Through-the-wall object reconstruction via reinforcement learning","authors":"Daniel Pomerico,&nbsp;Aihua Wood,&nbsp;Philip Cho","doi":"10.1016/j.rinam.2024.100465","DOIUrl":null,"url":null,"abstract":"<div><p>This paper addresses the problem of characterizing and localizing objects via through-the-wall radar imaging. We consider two separate problems. First, we assume a single object is located in a room and we use a convolutional neural network (CNN) to classify the shape of the object. Second, we assume multiple objects are located in a room and use a U-net CNN to determine the location of the object via pixel-by-pixel classification. For both problems, we use numerical methods to simulate the electromagnetic field assuming known room parameters and object location. The simulated data is used to train and evaluate both the CNN and U-net CNN. In the case of single objects, we achieve 90% accuracy in classifying the shape of the object. In the case of multiple objects, we show that the U-Net outputs an image segmentation heat map of the domain space, enabling visual analysis to identify the characteristics of multiple unknown objects. Given sufficient data, the U-net heat map highlights object pixels which provide the location and shape of the unknown objects, with precision and recall accuracy exceeding 80%.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100465"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000359/pdfft?md5=beba3ffaba7bad0af8e4333d2be60a87&pid=1-s2.0-S2590037424000359-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the problem of characterizing and localizing objects via through-the-wall radar imaging. We consider two separate problems. First, we assume a single object is located in a room and we use a convolutional neural network (CNN) to classify the shape of the object. Second, we assume multiple objects are located in a room and use a U-net CNN to determine the location of the object via pixel-by-pixel classification. For both problems, we use numerical methods to simulate the electromagnetic field assuming known room parameters and object location. The simulated data is used to train and evaluate both the CNN and U-net CNN. In the case of single objects, we achieve 90% accuracy in classifying the shape of the object. In the case of multiple objects, we show that the U-Net outputs an image segmentation heat map of the domain space, enabling visual analysis to identify the characteristics of multiple unknown objects. Given sufficient data, the U-net heat map highlights object pixels which provide the location and shape of the unknown objects, with precision and recall accuracy exceeding 80%.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过强化学习重建穿墙物体
本文探讨了通过穿墙雷达成像对物体进行特征描述和定位的问题。我们考虑了两个不同的问题。首先,我们假设房间里只有一个物体,并使用卷积神经网络(CNN)对物体的形状进行分类。其次,我们假设房间里有多个物体,并使用 U-net CNN 通过逐像素分类来确定物体的位置。对于这两个问题,我们使用数值方法模拟电磁场,假设房间参数和物体位置已知。模拟数据用于训练和评估 CNN 和 U-net CNN。在单个物体的情况下,我们对物体形状分类的准确率达到了 90%。在多个物体的情况下,我们发现 U-Net 可以输出域空间的图像分割热图,从而通过视觉分析识别多个未知物体的特征。在数据充足的情况下,U-Net 热图可突出显示提供未知物体位置和形状的物体像素,精确度和召回精度均超过 80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
期刊最新文献
A numerical technique for a class of nonlinear fractional 2D Volterra integro-differential equations The numerical solution of a Fredholm integral equations of the second kind by the weighted optimal quadrature formula High-efficiency implicit scheme for solving first-order partial differential equations On the cross-variation of a class of stochastic processes Computing the coarseness measure of a bicolored point set over guillotine partitions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1