CRISPR-mediated Sox9 activation and RelA inhibition enhance cell therapy for osteoarthritis.

IF 12.1 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Molecular Therapy Pub Date : 2024-08-07 Epub Date: 2024-06-14 DOI:10.1016/j.ymthe.2024.06.016
Lan Zhao, Yumei Lai, Hongli Jiao, Jun Li, Ke Lu, Jian Huang
{"title":"CRISPR-mediated Sox9 activation and RelA inhibition enhance cell therapy for osteoarthritis.","authors":"Lan Zhao, Yumei Lai, Hongli Jiao, Jun Li, Ke Lu, Jian Huang","doi":"10.1016/j.ymthe.2024.06.016","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA) is a painful and debilitating disease affecting over 500 million people worldwide. Intraarticular injection of mesenchymal stromal cells (MSCs) shows promise for the clinical treatment of OA, but the lack of consistency in MSC preparation and application makes it difficult to further optimize MSC therapy and to properly evaluate the clinical outcomes. In this study, we used Sox9 activation and RelA inhibition, both mediated by the CRISPR-dCas9 technology simultaneously, to engineer MSCs with enhanced chondrogenic potential and downregulated inflammatory responses. We found that both Sox9 and RelA could be fine-tuned to the desired levels, which enhances the chondrogenic and immunomodulatory potentials of the cells. Intraarticular injection of modified cells significantly attenuated cartilage degradation and palliated OA pain compared with the injection of cell culture medium or unmodified cells. Mechanistically, the modified cells promoted the expression of factors beneficial to cartilage integrity, inhibited the production of catabolic enzymes in osteoarthritic joints, and suppressed immune cells. Interestingly, a substantial number of modified cells could survive in the cartilaginous tissues including articular cartilage and meniscus. Together, our results suggest that CRISPR-dCas9-based gene regulation is useful for optimizing MSC therapy for OA.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":null,"pages":null},"PeriodicalIF":12.1000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2024.06.016","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoarthritis (OA) is a painful and debilitating disease affecting over 500 million people worldwide. Intraarticular injection of mesenchymal stromal cells (MSCs) shows promise for the clinical treatment of OA, but the lack of consistency in MSC preparation and application makes it difficult to further optimize MSC therapy and to properly evaluate the clinical outcomes. In this study, we used Sox9 activation and RelA inhibition, both mediated by the CRISPR-dCas9 technology simultaneously, to engineer MSCs with enhanced chondrogenic potential and downregulated inflammatory responses. We found that both Sox9 and RelA could be fine-tuned to the desired levels, which enhances the chondrogenic and immunomodulatory potentials of the cells. Intraarticular injection of modified cells significantly attenuated cartilage degradation and palliated OA pain compared with the injection of cell culture medium or unmodified cells. Mechanistically, the modified cells promoted the expression of factors beneficial to cartilage integrity, inhibited the production of catabolic enzymes in osteoarthritic joints, and suppressed immune cells. Interestingly, a substantial number of modified cells could survive in the cartilaginous tissues including articular cartilage and meniscus. Together, our results suggest that CRISPR-dCas9-based gene regulation is useful for optimizing MSC therapy for OA.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CRISPR 介导的 Sox9 激活和 RelA 抑制增强了骨关节炎的细胞疗法。
骨关节炎(OA)是一种令人痛苦和衰弱的疾病,影响着全球5亿多人。间充质干细胞(MSCs)的关节内注射显示出临床治疗骨关节炎的前景,但由于间充质干细胞的制备和应用缺乏一致性,因此很难进一步优化间充质干细胞疗法并正确评估临床效果。在这项研究中,我们利用CRISPR/dCas9技术同时介导的Sox9激活和RelA抑制来设计具有增强软骨生成潜能和降低炎症反应的间充质干细胞。我们发现,Sox9和RelA都可以微调到所需的水平,从而增强细胞的软骨生成潜能和免疫调节潜能。与注射细胞培养基或未经修饰的细胞相比,关节内注射修饰细胞能明显减轻软骨退化,缓解OA疼痛。从机理上讲,修饰细胞促进了对软骨完整性有益的因子的表达,抑制了骨关节炎关节中分解酶的产生,并抑制了免疫细胞。有趣的是,大量改造细胞可以在软骨组织(包括关节软骨和半月板)中存活。总之,我们的研究结果表明,基于CRISPR/dCas9的基因调控可用于优化治疗OA的间充质干细胞疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
期刊最新文献
Engineering a solution for allogeneic CAR-T rejection. Targeting Rap1b signaling cascades with CDNF: Modulating Platelet Activation, Regulating Plasma Oxylipins and Mitigating Reperfusion Injury in stroke. A CD25×TIGIT bispecific antibody induces anti-tumor activity through selective intratumoral Treg cell depletion. A chimeric anti-inflammatory and anti-vascularization immunomodulator prevents high-risk corneal transplantation rejection via ex vivo gene therapy. Case study of CD19-directed chimeric antigen receptor T-cell therapy in a subject with immune-mediate necrotizing myopathy treated in the RESET-Myositis™ phase I/II trial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1