EP300 promotes tumor stemness via epigenetic activation of CRISP3 leading to lobaplatin resistance in triple-negative breast cancer.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-09-01 Epub Date: 2024-06-16 DOI:10.1007/s13577-024-01091-w
Yan Wang, Yi Zhang, Xiaowei Qi
{"title":"EP300 promotes tumor stemness via epigenetic activation of CRISP3 leading to lobaplatin resistance in triple-negative breast cancer.","authors":"Yan Wang, Yi Zhang, Xiaowei Qi","doi":"10.1007/s13577-024-01091-w","DOIUrl":null,"url":null,"abstract":"<p><p>Lobaplatin shows antitumor activity against a wide range of tumors, including triple-negative breast cancer (TNBC), and has been linked to cancer stem cell pool. Here, we investigated the molecular mechanisms behind lobaplatin resistance and stemness in vitro and in vivo. Two chemoresistance-related GEO data sets (GSE70690 and GSE103115) were included to screen out relevant genes. Cysteine-rich secretory protein 3 (CRISP3) was found to be overexpressed in lobaplatin-resistant TNBC and related to poor diagnosis. CRISP3 expression was significantly correlated with tumor stemness markers in lobaplatin-resistant cells. E1A-associated protein p300 (EP300) regulated CRISP3 expression by affecting the H3K27ac modification of the CRISP3 promoter. In addition, knocking down EP300 curbed the malignant biological behavior of lobaplatin-resistant cells, which was antagonized by CRISP3 overexpression. Collectively, our results highlight the EP300/CRISP3 axis as a key driver of lobaplatin resistance in TNBC and suggest that therapeutic targeting of this axis may be an effective strategy for enhancing platinum sensitivity in TNBC.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-024-01091-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Lobaplatin shows antitumor activity against a wide range of tumors, including triple-negative breast cancer (TNBC), and has been linked to cancer stem cell pool. Here, we investigated the molecular mechanisms behind lobaplatin resistance and stemness in vitro and in vivo. Two chemoresistance-related GEO data sets (GSE70690 and GSE103115) were included to screen out relevant genes. Cysteine-rich secretory protein 3 (CRISP3) was found to be overexpressed in lobaplatin-resistant TNBC and related to poor diagnosis. CRISP3 expression was significantly correlated with tumor stemness markers in lobaplatin-resistant cells. E1A-associated protein p300 (EP300) regulated CRISP3 expression by affecting the H3K27ac modification of the CRISP3 promoter. In addition, knocking down EP300 curbed the malignant biological behavior of lobaplatin-resistant cells, which was antagonized by CRISP3 overexpression. Collectively, our results highlight the EP300/CRISP3 axis as a key driver of lobaplatin resistance in TNBC and suggest that therapeutic targeting of this axis may be an effective strategy for enhancing platinum sensitivity in TNBC.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EP300通过表观遗传学激活CRISP3促进肿瘤干性,导致三阴性乳腺癌对叶铂产生耐药性。
洛铂对包括三阴性乳腺癌(TNBC)在内的多种肿瘤具有抗肿瘤活性,并与癌症干细胞池有关。在此,我们研究了体外和体内洛铂耐药性和干细胞背后的分子机制。我们纳入了两个化疗耐药性相关的GEO数据集(GSE70690和GSE103115),以筛选出相关基因。研究发现,富半胱氨酸分泌蛋白3(CRISP3)在洛铂耐药的TNBC中过表达,并与不良诊断相关。CRISP3的表达与抗叶铂细胞中的肿瘤干性标志物明显相关。E1A相关蛋白p300(EP300)通过影响CRISP3启动子的H3K27ac修饰来调控CRISP3的表达。此外,敲除EP300可抑制抗叶铂细胞的恶性生物学行为,而CRISP3的过表达可拮抗这种行为。总之,我们的研究结果突显了EP300/CRISP3轴是TNBC中叶铂耐药的关键驱动因素,并表明针对该轴的治疗可能是提高TNBC中铂敏感性的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1