Dynamics of simplicial SEIRS epidemic model: global asymptotic stability and neural Lyapunov functions.

IF 2.3 4区 数学 Q2 BIOLOGY Journal of Mathematical Biology Pub Date : 2024-06-16 DOI:10.1007/s00285-024-02119-3
Yukun Zou, Xiaoxiao Peng, Wei Yang, Jingdong Zhang, Wei Lin
{"title":"Dynamics of simplicial SEIRS epidemic model: global asymptotic stability and neural Lyapunov functions.","authors":"Yukun Zou, Xiaoxiao Peng, Wei Yang, Jingdong Zhang, Wei Lin","doi":"10.1007/s00285-024-02119-3","DOIUrl":null,"url":null,"abstract":"<p><p>The transmission of infectious diseases on a particular network is ubiquitous in the physical world. Here, we investigate the transmission mechanism of infectious diseases with an incubation period using a networked compartment model that contains simplicial interactions, a typical high-order structure. We establish a simplicial SEIRS model and find that the proportion of infected individuals in equilibrium increases due to the many-body connections, regardless of the type of connections used. We analyze the dynamics of the established model, including existence and local asymptotic stability, and highlight differences from existing models. Significantly, we demonstrate global asymptotic stability using the neural Lyapunov function, a machine learning technique, with both numerical simulations and rigorous analytical arguments. We believe that our model owns the potential to provide valuable insights into transmission mechanisms of infectious diseases on high-order network structures, and that our approach and theory of using neural Lyapunov functions to validate model asymptotic stability can significantly advance investigations on complex dynamics of infectious disease.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"89 1","pages":"12"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02119-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The transmission of infectious diseases on a particular network is ubiquitous in the physical world. Here, we investigate the transmission mechanism of infectious diseases with an incubation period using a networked compartment model that contains simplicial interactions, a typical high-order structure. We establish a simplicial SEIRS model and find that the proportion of infected individuals in equilibrium increases due to the many-body connections, regardless of the type of connections used. We analyze the dynamics of the established model, including existence and local asymptotic stability, and highlight differences from existing models. Significantly, we demonstrate global asymptotic stability using the neural Lyapunov function, a machine learning technique, with both numerical simulations and rigorous analytical arguments. We believe that our model owns the potential to provide valuable insights into transmission mechanisms of infectious diseases on high-order network structures, and that our approach and theory of using neural Lyapunov functions to validate model asymptotic stability can significantly advance investigations on complex dynamics of infectious disease.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
简约 SEIRS 流行模型的动力学:全局渐近稳定性和神经 Lyapunov 函数。
传染病在特定网络中的传播在物理世界中无处不在。在这里,我们利用一个包含简单相互作用(一种典型的高阶结构)的网络隔室模型,研究了有潜伏期的传染病的传播机制。我们建立了一个简单的 SEIRS 模型,并发现无论使用哪种连接方式,平衡状态下受感染个体的比例都会因多体连接而增加。我们分析了所建模型的动力学,包括存在性和局部渐近稳定性,并强调了与现有模型的不同之处。重要的是,我们利用神经 Lyapunov 函数(一种机器学习技术),通过数值模拟和严格的分析论证,证明了全局渐近稳定性。我们相信,我们的模型有可能为研究传染病在高阶网络结构上的传播机制提供有价值的见解,而我们利用神经李亚普诺夫函数验证模型渐近稳定性的方法和理论可以极大地推动对传染病复杂动力学的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
120
审稿时长
6 months
期刊介绍: The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena. Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.
期刊最新文献
A seasonal succession model for frog population dynamics with mating behaviors. Switching, multiple time-scales and geometric blow-up in a low-dimensional gene regulatory network. The Pfaffian Structure of CFN Phylogenetic Networks. Dispersal-induced growth in time-periodic two-patch environments with asymmetric migration. Analysis of a household-scale model for the invasion of Wolbachia into a resident mosquito population.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1