Metallo-Porous Organic Polymer as a CO2 Reduction Catalyst toward Selective Solar Fuel Production

IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Chemistry of Materials Pub Date : 2024-06-14 DOI:10.1021/acs.chemmater.4c00315
R. Kamal Saravanan, Sanchita Karmakar, Faruk Ahamed Rahimi, Anupam Dey, Rohan Jena, Dipanjan Maity and Tapas Kumar Maji*, 
{"title":"Metallo-Porous Organic Polymer as a CO2 Reduction Catalyst toward Selective Solar Fuel Production","authors":"R. Kamal Saravanan,&nbsp;Sanchita Karmakar,&nbsp;Faruk Ahamed Rahimi,&nbsp;Anupam Dey,&nbsp;Rohan Jena,&nbsp;Dipanjan Maity and Tapas Kumar Maji*,&nbsp;","doi":"10.1021/acs.chemmater.4c00315","DOIUrl":null,"url":null,"abstract":"<p >In photocatalytic CO<sub>2</sub> reduction for solar fuel production, selectivity and efficiency are crucial. Here, we report the design and synthesis of a donor–acceptor imine-based porous organic polymer (<b>POP</b>) <b>Tpa-Phenda</b> and a metallo-porous organic polymer (<b>M-POP</b>) <b>Tpa-Phenda-Ru</b>, by reacting tris(4-formylphenyl)amine (Tpa) and Phenda/[Ru(Phenda)(bpy)<sub>2</sub>]<sup>2+</sup> (Phenda = 4,4′-(1,10-phenanthroline-3,8-diyl)dianiline; bpy = 2,2′-bipyridine) using acid-catalyzed Schiff base condensation reaction under solvothermal conditions. Here, the donor–acceptor dyads in both polymers harvested the visible light and transferred the photoexcited electrons to the active catalytic center, which is elucidated through <i>in situ</i> UV–vis spectroscopy. Both <b>Tpa-Phenda</b> and <b>Tpa-Phenda-Ru</b> produced CO in the acetonitrile–water medium using 1-benzyl-1,4-dihydronicotinamide (BNAH) and triethylamine (TEA) as sacrificial electron donors. <b>Tpa-Phenda</b> and <b>Tpa-Phenda-Ru</b> produced 0.92 and 9.77 mmol g<sup>–1</sup> of CO, respectively. <b>Tpa-Phenda-Ru</b> exhibited a higher rate of CO formation and selectivity compared to bare <b>Tpa-Phenda</b>. This can be attributed to the presence of the coordinated Ru<sup>II</sup> center in <b>Tpa-Phenda-Ru</b>, which acts as a catalytic site. Interestingly, <b>Tpa-Phenda</b> showed a low exciton binding energy (78 meV), which enhances the charge transfer efficiency and minimizes the energy loss. From an <i>in situ</i> diffuse reflectance FTIR spectroscopy (DRIFTS) study together with DFT calculation, a possible catalytic cycle for CO formation was constructed.</p>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c00315","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In photocatalytic CO2 reduction for solar fuel production, selectivity and efficiency are crucial. Here, we report the design and synthesis of a donor–acceptor imine-based porous organic polymer (POP) Tpa-Phenda and a metallo-porous organic polymer (M-POP) Tpa-Phenda-Ru, by reacting tris(4-formylphenyl)amine (Tpa) and Phenda/[Ru(Phenda)(bpy)2]2+ (Phenda = 4,4′-(1,10-phenanthroline-3,8-diyl)dianiline; bpy = 2,2′-bipyridine) using acid-catalyzed Schiff base condensation reaction under solvothermal conditions. Here, the donor–acceptor dyads in both polymers harvested the visible light and transferred the photoexcited electrons to the active catalytic center, which is elucidated through in situ UV–vis spectroscopy. Both Tpa-Phenda and Tpa-Phenda-Ru produced CO in the acetonitrile–water medium using 1-benzyl-1,4-dihydronicotinamide (BNAH) and triethylamine (TEA) as sacrificial electron donors. Tpa-Phenda and Tpa-Phenda-Ru produced 0.92 and 9.77 mmol g–1 of CO, respectively. Tpa-Phenda-Ru exhibited a higher rate of CO formation and selectivity compared to bare Tpa-Phenda. This can be attributed to the presence of the coordinated RuII center in Tpa-Phenda-Ru, which acts as a catalytic site. Interestingly, Tpa-Phenda showed a low exciton binding energy (78 meV), which enhances the charge transfer efficiency and minimizes the energy loss. From an in situ diffuse reflectance FTIR spectroscopy (DRIFTS) study together with DFT calculation, a possible catalytic cycle for CO formation was constructed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属多孔有机聚合物作为二氧化碳还原催化剂用于选择性太阳能燃料生产
在用于太阳能燃料生产的光催化二氧化碳还原过程中,选择性和效率至关重要。在此,我们报告了通过三(4-甲酰基苯基)胺(Tpa)和 Phenda/[Ru(Phenda)(bpy)2]2+ (Phenda = 4,4′-(1,10-菲罗啉-3,8-二基)二苯胺;bpy = 2,2′-联吡啶)在溶热条件下通过酸催化席夫碱缩合反应生成。在这种情况下,两种聚合物中的供体-受体二元化合物都能捕获可见光,并将光激发电子转移到活性催化中心,这一点通过原位紫外-可见光谱得以阐明。以 1-苄基-1,4-二氢烟酰胺(BNAH)和三乙胺(TEA)为牺牲电子供体,Tpa-Phenda 和 Tpa-Phenda-Ru 都能在乙腈-水介质中产生一氧化碳。Tpa-Phenda 和 Tpa-Phenda-Ru 分别产生了 0.92 和 9.77 mmol g-1 的 CO。与裸 Tpa-Phenda 相比,Tpa-Phenda-Ru 表现出更高的 CO 生成率和选择性。这可能是由于 Tpa-Phenda-Ru 中存在配位的 RuII 中心,它起到了催化位点的作用。有趣的是,Tpa-Phenda 显示出较低的激子结合能(78 meV),从而提高了电荷转移效率并最大限度地减少了能量损失。通过原位漫反射傅立叶变换红外光谱(DRIFTS)研究和 DFT 计算,构建了一个可能的 CO 生成催化循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
期刊最新文献
Antiferromagnetic Ordering in the Frustrated Rare-Earth Chain Systems M2Cl3 (M = Gd, Tb) Advancing the Performance of Lithium-Rich Oxides in Concert with Inherent Complexities: Domain-Selective Substitutions Issue Editorial Masthead Issue Publication Information Data-Driven High-Throughput Screening and Experimental Realization of Ag2B(IV)B′(VI)O6 under Negative Chemical-Pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1