A metabolomics pipeline highlights microbial metabolism in bloodstream infections

IF 45.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Pub Date : 2024-06-16 DOI:10.1016/j.cell.2024.05.035
Jared R. Mayers, Jack Varon, Ruixuan R. Zhou, Martin Daniel-Ivad, Courtney Beaulieu, Amrisha Bholse, Nathaniel R. Glasser, Franziska M. Lichtenauer, Julie Ng, Mayra Pinilla Vera, Curtis Huttenhower, Mark A. Perrella, Clary B. Clish, Sihai D. Zhao, Rebecca M. Baron, Emily P. Balskus
{"title":"A metabolomics pipeline highlights microbial metabolism in bloodstream infections","authors":"Jared R. Mayers, Jack Varon, Ruixuan R. Zhou, Martin Daniel-Ivad, Courtney Beaulieu, Amrisha Bholse, Nathaniel R. Glasser, Franziska M. Lichtenauer, Julie Ng, Mayra Pinilla Vera, Curtis Huttenhower, Mark A. Perrella, Clary B. Clish, Sihai D. Zhao, Rebecca M. Baron, Emily P. Balskus","doi":"10.1016/j.cell.2024.05.035","DOIUrl":null,"url":null,"abstract":"<p>The growth of antimicrobial resistance (AMR) highlights an urgent need to identify bacterial pathogenic functions that may be targets for clinical intervention. Although severe infections profoundly alter host metabolism, prior studies have largely ignored microbial metabolism in this context. Here, we describe an iterative, comparative metabolomics pipeline to uncover microbial metabolic features in the complex setting of a host and apply it to investigate gram-negative bloodstream infection (BSI) in patients. We find elevated levels of bacterially derived acetylated polyamines during BSI and discover the enzyme responsible for their production (SpeG). Blocking SpeG activity reduces bacterial proliferation and slows pathogenesis. Reduction of SpeG activity also enhances bacterial membrane permeability and increases intracellular antibiotic accumulation, allowing us to overcome AMR in culture and <em>in vivo</em>. This study highlights how tools to study pathogen metabolism in the natural context of infection can reveal and prioritize therapeutic strategies for addressing challenging infections.</p>","PeriodicalId":9656,"journal":{"name":"Cell","volume":"12 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2024.05.035","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The growth of antimicrobial resistance (AMR) highlights an urgent need to identify bacterial pathogenic functions that may be targets for clinical intervention. Although severe infections profoundly alter host metabolism, prior studies have largely ignored microbial metabolism in this context. Here, we describe an iterative, comparative metabolomics pipeline to uncover microbial metabolic features in the complex setting of a host and apply it to investigate gram-negative bloodstream infection (BSI) in patients. We find elevated levels of bacterially derived acetylated polyamines during BSI and discover the enzyme responsible for their production (SpeG). Blocking SpeG activity reduces bacterial proliferation and slows pathogenesis. Reduction of SpeG activity also enhances bacterial membrane permeability and increases intracellular antibiotic accumulation, allowing us to overcome AMR in culture and in vivo. This study highlights how tools to study pathogen metabolism in the natural context of infection can reveal and prioritize therapeutic strategies for addressing challenging infections.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
代谢组学流水线突显血流感染中的微生物代谢过程
抗菌药耐药性(AMR)的增长凸显了确定细菌致病功能的迫切需要,而这些功能可能是临床干预的目标。虽然严重感染会深刻改变宿主的新陈代谢,但之前的研究在很大程度上忽视了这种情况下的微生物新陈代谢。在这里,我们介绍了一种迭代比较代谢组学方法,用于发现宿主复杂环境中的微生物代谢特征,并将其应用于研究患者的革兰氏阴性血流感染(BSI)。我们发现 BSI 期间细菌衍生的乙酰化多胺水平升高,并发现了产生乙酰化多胺的酶 (SpeG)。阻断 SpeG 的活性可减少细菌增殖并减缓致病过程。降低 SpeG 的活性还能增强细菌膜的通透性,增加细胞内抗生素的积累,使我们能够在培养物和体内克服 AMR。这项研究强调了在感染的自然环境中研究病原体代谢的工具如何揭示并优先选择治疗策略,以应对具有挑战性的感染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell
Cell 生物-生化与分子生物学
CiteScore
110.00
自引率
0.80%
发文量
396
审稿时长
2 months
期刊介绍: Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO). The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries. In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.
期刊最新文献
Squeeze pumping of lipids and insecticides by ABCH transporter Perception of a pathogenic signature initiates intergenerational protection Inflammation switches the chemoattractant requirements for naive lymphocyte entry into lymph nodes Periodic ER-plasma membrane junctions support long-range Ca2+ signal integration in dendrites Structural determinants of co-translational protein complex assembly
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1