Zachary J McKenna, Josh Foster, Whitley C Atkins, Caitlin P Jarrard, Satyam Sarma, Craig G Crandall
{"title":"Plasma epinephrine and norepinephrine responses to extreme heat exposures in young and older adults.","authors":"Zachary J McKenna, Josh Foster, Whitley C Atkins, Caitlin P Jarrard, Satyam Sarma, Craig G Crandall","doi":"10.1152/ajpregu.00111.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperthermia is known as a hyperadrenergic state, yet there is a lack of data on the sympathetic responses to ambient heat stress in humans. Therefore, we investigated the plasma epinephrine and norepinephrine concentrations of healthy young and older adults exposed to 3 h of very hot and dry, as well as hot and humid, heat, both with accompanying activities of daily living. We hypothesized that older adults, compared with young adults, would have augmented increases in epinephrine and norepinephrine concentrations secondary to increased thermal strain. Young (<i>n</i> = 20) and older (<i>n</i> = 18) participants underwent two 3-h heat exposures on different days: very hot and dry [47°C and 15% relative humidity (RH)] and hot and humid (41°C and 40% RH). To mimic heat generation comparable to activities of daily living, participants performed seven 5-min bouts of light cycling (approximately 3 METS) dispersed throughout the heat exposure. We measured plasma concentrations of epinephrine and norepinephrine at baseline, end, and 2-h postheat exposure. There was a group-wide increase in epinephrine from baseline to the end of the heat exposure (Δ19 ± 27 pg/mL; <i>P</i> < 0.001) in the hot and humid condition, but not in the very hot and dry condition (Δ6 ± 19 pg/mL; <i>P</i> = 0.10). There were group-wide decreases in norepinephrine concentrations from baseline to the end of the heat exposure in both the very hot and dry (Δ-131 ± 169 pg/mL; <i>P</i> < 0.001) and the hot and humid (Δ-138 ± 157 pg/mL; <i>P</i> < 0.001) conditions, with both returning to near baseline at 2-h postexposure. These data suggest that ambient heating with accompanying bouts of light intermittent exercise may lead to decreases in circulating concentrations of norepinephrine.<b>NEW & NOTEWORTHY</b> Herein we present plasma epinephrine and norepinephrine concentrations to 3 h of very hot and dry, as well as hot and humid, heat exposures with accompanying activities of daily living in young and older participants. We found <i>1</i>) increased plasma concentrations of epinephrine in young and older adults following the hot and humid, but not the very hot and dry exposures and <i>2</i>) decreased concentrations of norepinephrine in both groups following exposure to both conditions.</p>","PeriodicalId":7630,"journal":{"name":"American journal of physiology. Regulatory, integrative and comparative physiology","volume":" ","pages":"R188-R194"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444497/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Regulatory, integrative and comparative physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpregu.00111.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hyperthermia is known as a hyperadrenergic state, yet there is a lack of data on the sympathetic responses to ambient heat stress in humans. Therefore, we investigated the plasma epinephrine and norepinephrine concentrations of healthy young and older adults exposed to 3 h of very hot and dry, as well as hot and humid, heat, both with accompanying activities of daily living. We hypothesized that older adults, compared with young adults, would have augmented increases in epinephrine and norepinephrine concentrations secondary to increased thermal strain. Young (n = 20) and older (n = 18) participants underwent two 3-h heat exposures on different days: very hot and dry [47°C and 15% relative humidity (RH)] and hot and humid (41°C and 40% RH). To mimic heat generation comparable to activities of daily living, participants performed seven 5-min bouts of light cycling (approximately 3 METS) dispersed throughout the heat exposure. We measured plasma concentrations of epinephrine and norepinephrine at baseline, end, and 2-h postheat exposure. There was a group-wide increase in epinephrine from baseline to the end of the heat exposure (Δ19 ± 27 pg/mL; P < 0.001) in the hot and humid condition, but not in the very hot and dry condition (Δ6 ± 19 pg/mL; P = 0.10). There were group-wide decreases in norepinephrine concentrations from baseline to the end of the heat exposure in both the very hot and dry (Δ-131 ± 169 pg/mL; P < 0.001) and the hot and humid (Δ-138 ± 157 pg/mL; P < 0.001) conditions, with both returning to near baseline at 2-h postexposure. These data suggest that ambient heating with accompanying bouts of light intermittent exercise may lead to decreases in circulating concentrations of norepinephrine.NEW & NOTEWORTHY Herein we present plasma epinephrine and norepinephrine concentrations to 3 h of very hot and dry, as well as hot and humid, heat exposures with accompanying activities of daily living in young and older participants. We found 1) increased plasma concentrations of epinephrine in young and older adults following the hot and humid, but not the very hot and dry exposures and 2) decreased concentrations of norepinephrine in both groups following exposure to both conditions.
期刊介绍:
The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology publishes original investigations that illuminate normal or abnormal regulation and integration of physiological mechanisms at all levels of biological organization, ranging from molecules to humans, including clinical investigations. Major areas of emphasis include regulation in genetically modified animals; model organisms; development and tissue plasticity; neurohumoral control of circulation and hypertension; local control of circulation; cardiac and renal integration; thirst and volume, electrolyte homeostasis; glucose homeostasis and energy balance; appetite and obesity; inflammation and cytokines; integrative physiology of pregnancy-parturition-lactation; and thermoregulation and adaptations to exercise and environmental stress.