Biomarkers for aging in Caenorhabditis elegans high throughput screening.

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemical Society transactions Pub Date : 2024-06-26 DOI:10.1042/BST20231303
Victoria R Yarmey, Adriana San-Miguel
{"title":"Biomarkers for aging in Caenorhabditis elegans high throughput screening.","authors":"Victoria R Yarmey, Adriana San-Miguel","doi":"10.1042/BST20231303","DOIUrl":null,"url":null,"abstract":"<p><p>Aging is characterized by a functional decline in organism fitness over time due to a complex combination of genetic and environmental factors [ 1-4]. With an increasing elderly population at risk of age-associated diseases, there is a pressing need for research dedicated to promoting health and longevity through anti-aging interventions. The roundworm Caenorhabditis elegans is an established model organism for aging studies due to its short life cycle, ease of culture, and conserved aging pathways. These benefits also make the worm well-suited for high-throughput screening (HTS) methods to study biomarkers of the molecular changes, cellular dysfunction, and physiological decline associated with aging. Within this review, we offer a summary of recent advances in HTS techniques to study biomarkers of aging in C. elegans.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society transactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BST20231303","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aging is characterized by a functional decline in organism fitness over time due to a complex combination of genetic and environmental factors [ 1-4]. With an increasing elderly population at risk of age-associated diseases, there is a pressing need for research dedicated to promoting health and longevity through anti-aging interventions. The roundworm Caenorhabditis elegans is an established model organism for aging studies due to its short life cycle, ease of culture, and conserved aging pathways. These benefits also make the worm well-suited for high-throughput screening (HTS) methods to study biomarkers of the molecular changes, cellular dysfunction, and physiological decline associated with aging. Within this review, we offer a summary of recent advances in HTS techniques to study biomarkers of aging in C. elegans.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高通量筛选草履虫衰老生物标志物。
衰老的特点是,由于遗传和环境因素的复杂组合,机体的机能随着时间的推移而下降[ 1-4]。随着面临老年相关疾病风险的老年人口不断增加,迫切需要通过抗衰老干预措施来促进健康和长寿的研究。蛔虫秀丽隐杆线虫(Caenorhabditis elegans)因其生命周期短、易于培养和保守的衰老途径而成为衰老研究的成熟模式生物。这些优点也使该蠕虫非常适合采用高通量筛选(HTS)方法来研究与衰老相关的分子变化、细胞功能障碍和生理衰退的生物标志物。在这篇综述中,我们总结了用于研究优雅虫衰老生物标志物的 HTS 技术的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemical Society transactions
Biochemical Society transactions 生物-生化与分子生物学
CiteScore
7.80
自引率
0.00%
发文量
351
审稿时长
3-6 weeks
期刊介绍: Biochemical Society Transactions is the reviews journal of the Biochemical Society. Publishing concise reviews written by experts in the field, providing a timely snapshot of the latest developments across all areas of the molecular and cellular biosciences. Elevating our authors’ ideas and expertise, each review includes a perspectives section where authors offer comment on the latest advances, a glimpse of future challenges and highlighting the importance of associated research areas in far broader contexts.
期刊最新文献
Histone H3 mutations and their impact on genome stability maintenance. How does CHD4 slide nucleosomes? Progress towards understanding risk factor mechanisms in the development of autism spectrum disorders. Suppression of double-stranded RNA sensing in cancer: molecular mechanisms and therapeutic potential. Human E3 ubiquitin ligases: accelerators and brakes for SARS-CoV-2 infection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1