Epithelial mesenchymal transition in human menstruation and implantation.

IF 1.3 4区 医学 Q4 ENDOCRINOLOGY & METABOLISM Endocrine journal Pub Date : 2024-08-08 Epub Date: 2024-06-15 DOI:10.1507/endocrj.EJ24-0229
Hiroshi Uchida
{"title":"Epithelial mesenchymal transition in human menstruation and implantation.","authors":"Hiroshi Uchida","doi":"10.1507/endocrj.EJ24-0229","DOIUrl":null,"url":null,"abstract":"<p><p>The endometrium during the sexual cycle undergoes detachment, tissue remodeling, and differentiation during the menstrual cycle. Localized and transient destruction and regeneration of endometrial tissue are also essential for pregnancy. It is possible to attribute many causes of failure in infertility treatment to the implantation stage. To improve the success rate of plateau fertility treatment, it is important to understand the regeneration mechanism of the endometrium, a unique regenerative tissue in the human body. In association with cell proliferation, tissue remodeling requires the relocation of proliferative cells, and the steady-state epithelial cells need to be motile for the relocation. Transient add-on motile activity in epithelial cells is mediated by epithelial to mesenchymal transition (EMT) and reversible mesenchymal to epithelial transition (MET). The destruction and regeneration of endometrial tissue over a period of days to weeks requires a system with a rapid and characteristic mechanism similar to that of wound healing. Here, I review the relationship between the well-known phenomenon of EMT in wound healing and endometrial tissue remodeling during the sexual cycle and pregnancy establishment, which are automatically triggered by menstruation and embryonal invasion.</p>","PeriodicalId":11631,"journal":{"name":"Endocrine journal","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1507/endocrj.EJ24-0229","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/15 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

The endometrium during the sexual cycle undergoes detachment, tissue remodeling, and differentiation during the menstrual cycle. Localized and transient destruction and regeneration of endometrial tissue are also essential for pregnancy. It is possible to attribute many causes of failure in infertility treatment to the implantation stage. To improve the success rate of plateau fertility treatment, it is important to understand the regeneration mechanism of the endometrium, a unique regenerative tissue in the human body. In association with cell proliferation, tissue remodeling requires the relocation of proliferative cells, and the steady-state epithelial cells need to be motile for the relocation. Transient add-on motile activity in epithelial cells is mediated by epithelial to mesenchymal transition (EMT) and reversible mesenchymal to epithelial transition (MET). The destruction and regeneration of endometrial tissue over a period of days to weeks requires a system with a rapid and characteristic mechanism similar to that of wound healing. Here, I review the relationship between the well-known phenomenon of EMT in wound healing and endometrial tissue remodeling during the sexual cycle and pregnancy establishment, which are automatically triggered by menstruation and embryonal invasion.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人类月经和植入过程中的上皮间充质转化。
性周期中的子宫内膜在月经周期中会发生脱落、组织重塑和分化。子宫内膜组织局部和短暂的破坏和再生也是怀孕所必需的。许多不孕症治疗失败的原因都可以归结于着床阶段。为了提高高原不孕症治疗的成功率,了解子宫内膜这一人体特有的再生组织的再生机制非常重要。在细胞增殖的同时,组织重塑需要增殖细胞的迁移,而稳态上皮细胞的迁移需要运动性。上皮细胞的瞬时附加运动活性是由上皮向间充质转化(EMT)和可逆的间充质向上皮转化(MET)介导的。子宫内膜组织在数天至数周内的破坏和再生需要一个具有类似伤口愈合的快速和特征机制的系统。在此,我回顾了众所周知的伤口愈合中的 EMT 现象与性周期和妊娠建立过程中子宫内膜组织重塑之间的关系,后者是由月经和胚胎入侵自动触发的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Endocrine journal
Endocrine journal 医学-内分泌学与代谢
CiteScore
4.30
自引率
5.00%
发文量
224
审稿时长
1.5 months
期刊介绍: Endocrine Journal is an open access, peer-reviewed online journal with a long history. This journal publishes peer-reviewed research articles in multifaceted fields of basic, translational and clinical endocrinology. Endocrine Journal provides a chance to exchange your ideas, concepts and scientific observations in any area of recent endocrinology. Manuscripts may be submitted as Original Articles, Notes, Rapid Communications or Review Articles. We have a rapid reviewing and editorial decision system and pay a special attention to our quick, truly scientific and frequently-citable publication. Please go through the link for author guideline.
期刊最新文献
Pembrolizumab with external radiation therapy effectively controlled TMB-high unresectable recurrent parathyroid cancer: a case report with review of literature. Paeoniflorin alleviates high glucose-induced endothelial cell apoptosis in diabetes mellitus by inhibiting HRAS-activated RAS pathway. Hyponatremia due to preserved non-osmotic arginine vasopressin secretion in adipsic diabetes insipidus: a case report with review of literature. A novel frameshift variant of GATA3 (p.Ala17ProfsTer178) responsible for HDR syndrome in a Japanese family. Management of thyroid tumors diagnosed cytologically as follicular neoplasms in a high-volume center: utility of a scoring system using serum thyroglobulin level, tumor size, ultrasound testing, and cytological diagnosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1