Yan-Min Xu, David Ternant, Martine Reynaud-Gaubert, Théodora Bejan-Angoulvant, Sylvain Marchand-Adam
{"title":"Population pharmacokinetics of mycophenolate in patients treated for interstitial lung disease (EVER-ILD study)","authors":"Yan-Min Xu, David Ternant, Martine Reynaud-Gaubert, Théodora Bejan-Angoulvant, Sylvain Marchand-Adam","doi":"10.1111/fcp.13021","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Mycophenolate mofetil (MMF) has been used to treat interstitial lung disease (ILD), but mycophenolate (MPA) pharmacokinetics was not reported for this use. This ancillary study of the EVER-ILD protocol aimed at describing the pharmacokinetic variability of MPA using population modelling in ILD.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Concentrations of MPA were measured during an 8-h course for 27 ILD patients treated with 1000 mg MMF b.i.d. Absorption, distribution and elimination of MPA were described using population compartment models with first-order transfer and elimination rate constants, while accounting for both absorption peaks using gamma absorption models.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The pharmacokinetics of MPA was best described using a two-compartment model and two gamma absorption models, model performances of this model were still similar to those of a one gamma absorption model. This pharmacokinetics seemed to be notably influenced by body weight, renal function and inflammatory status. The distribubtion value area under the concentration curve between two administrations of MMF was AUC<sub>12</sub> = 52.5 mg.h/L in median (interquartile range: 42.2–58.0 mg.h/L).</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>This is the first study reporting MPA pharmacokinetics in ILD. This pharmacokinetics appears to be similar to other indications and should be further investigated in future studies.</p>\n </section>\n </div>","PeriodicalId":12657,"journal":{"name":"Fundamental & Clinical Pharmacology","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/fcp.13021","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental & Clinical Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/fcp.13021","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Mycophenolate mofetil (MMF) has been used to treat interstitial lung disease (ILD), but mycophenolate (MPA) pharmacokinetics was not reported for this use. This ancillary study of the EVER-ILD protocol aimed at describing the pharmacokinetic variability of MPA using population modelling in ILD.
Methods
Concentrations of MPA were measured during an 8-h course for 27 ILD patients treated with 1000 mg MMF b.i.d. Absorption, distribution and elimination of MPA were described using population compartment models with first-order transfer and elimination rate constants, while accounting for both absorption peaks using gamma absorption models.
Results
The pharmacokinetics of MPA was best described using a two-compartment model and two gamma absorption models, model performances of this model were still similar to those of a one gamma absorption model. This pharmacokinetics seemed to be notably influenced by body weight, renal function and inflammatory status. The distribubtion value area under the concentration curve between two administrations of MMF was AUC12 = 52.5 mg.h/L in median (interquartile range: 42.2–58.0 mg.h/L).
Conclusion
This is the first study reporting MPA pharmacokinetics in ILD. This pharmacokinetics appears to be similar to other indications and should be further investigated in future studies.
期刊介绍:
Fundamental & Clinical Pharmacology publishes reports describing important and novel developments in fundamental as well as clinical research relevant to drug therapy. Original articles, short communications and reviews are published on all aspects of experimental and clinical pharmacology including:
Antimicrobial, Antiviral Agents
Autonomic Pharmacology
Cardiovascular Pharmacology
Cellular Pharmacology
Clinical Trials
Endocrinopharmacology
Gene Therapy
Inflammation, Immunopharmacology
Lipids, Atherosclerosis
Liver and G-I Tract Pharmacology
Metabolism, Pharmacokinetics
Neuropharmacology
Neuropsychopharmacology
Oncopharmacology
Pediatric Pharmacology Development
Pharmacoeconomics
Pharmacoepidemiology
Pharmacogenetics, Pharmacogenomics
Pharmacovigilance
Pulmonary Pharmacology
Receptors, Signal Transduction
Renal Pharmacology
Thrombosis and Hemostasis
Toxicopharmacology
Clinical research, including clinical studies and clinical trials, may cover disciplines such as pharmacokinetics, pharmacodynamics, pharmacovigilance, pharmacoepidemiology, pharmacogenomics and pharmacoeconomics. Basic research articles from fields such as physiology and molecular biology which contribute to an understanding of drug therapy are also welcomed.