Elizabeth H. Boughton, Maria L. Silveira, Hilary Swain, Alia DeLong, Vivienne Sclater, Shefali Azad, Rosvel Bracho, Amartya Saha, Grégory Sonnier
{"title":"The LTAR Grazing Land Common Experiment at Archbold Biological Station-University of Florida","authors":"Elizabeth H. Boughton, Maria L. Silveira, Hilary Swain, Alia DeLong, Vivienne Sclater, Shefali Azad, Rosvel Bracho, Amartya Saha, Grégory Sonnier","doi":"10.1002/jeq2.20593","DOIUrl":null,"url":null,"abstract":"<p>The Archbold Biological Station-University of Florida (ABS-UF) Long-term Agroecosystem Research (LTAR) site lies in the heart of south-central Florida, representing subtropical humid grazing lands in North America and globally. Beef producers in this region face challenges due to climate variability, limited nutritive value of forages, poor soils, public concerns about water quality and greenhouse gas emissions, management trade-offs, economic uncertainty, and increasing urban encroachment. The ABS-UF Common Experiment, co-designed with stakeholders, will assess innovative management systems in comparison to prevailing management systems on key indicators of sustainability. Innovative management systems being tested are alternative fire (frequency and spatial extent) and grazing practices (stocking rate and system). The common experiment framework was implemented across a management intensity gradient spanning from native rangeland to cultivated pastures, including embedded wetlands. Issues that have arisen to date include difficulties in implementing prescribed fire and reduced productivity in cultivated pastures associated with innovative management, which led to an adjustment of the experimental treatment. A stakeholder advisory council will codesign future alternative treatments and guide experimental changes in this long-term experiment. Stakeholder engagement efforts revealed research priorities centered on financial strength, carbon (C) and greenhouse gas emissions, and water quality. Stakeholders are also interested in testing emerging technology such as the utility of virtual fencing. Results from ABS-UF provide a unique perspective from subtropical humid grazing lands for continental-scale cross-site synthesis on sustainable agroecosystems across LTAR.</p>","PeriodicalId":15732,"journal":{"name":"Journal of environmental quality","volume":"53 6","pages":"802-813"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jeq2.20593","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental quality","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jeq2.20593","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Archbold Biological Station-University of Florida (ABS-UF) Long-term Agroecosystem Research (LTAR) site lies in the heart of south-central Florida, representing subtropical humid grazing lands in North America and globally. Beef producers in this region face challenges due to climate variability, limited nutritive value of forages, poor soils, public concerns about water quality and greenhouse gas emissions, management trade-offs, economic uncertainty, and increasing urban encroachment. The ABS-UF Common Experiment, co-designed with stakeholders, will assess innovative management systems in comparison to prevailing management systems on key indicators of sustainability. Innovative management systems being tested are alternative fire (frequency and spatial extent) and grazing practices (stocking rate and system). The common experiment framework was implemented across a management intensity gradient spanning from native rangeland to cultivated pastures, including embedded wetlands. Issues that have arisen to date include difficulties in implementing prescribed fire and reduced productivity in cultivated pastures associated with innovative management, which led to an adjustment of the experimental treatment. A stakeholder advisory council will codesign future alternative treatments and guide experimental changes in this long-term experiment. Stakeholder engagement efforts revealed research priorities centered on financial strength, carbon (C) and greenhouse gas emissions, and water quality. Stakeholders are also interested in testing emerging technology such as the utility of virtual fencing. Results from ABS-UF provide a unique perspective from subtropical humid grazing lands for continental-scale cross-site synthesis on sustainable agroecosystems across LTAR.
期刊介绍:
Articles in JEQ cover various aspects of anthropogenic impacts on the environment, including agricultural, terrestrial, atmospheric, and aquatic systems, with emphasis on the understanding of underlying processes. To be acceptable for consideration in JEQ, a manuscript must make a significant contribution to the advancement of knowledge or toward a better understanding of existing concepts. The study should define principles of broad applicability, be related to problems over a sizable geographic area, or be of potential interest to a representative number of scientists. Emphasis is given to the understanding of underlying processes rather than to monitoring.
Contributions are accepted from all disciplines for consideration by the editorial board. Manuscripts may be volunteered, invited, or coordinated as a special section or symposium.