Efficient CRISPR-Cas12f1-Mediated Multiplex Bacterial Genome Editing via Low-Temperature Recovery.

IF 2.5 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of microbiology and biotechnology Pub Date : 2024-07-28 Epub Date: 2024-06-14 DOI:10.4014/jmb.2403.03033
Se Ra Lim, Hyun Ju Kim, Sang Jun Lee
{"title":"Efficient CRISPR-Cas12f1-Mediated Multiplex Bacterial Genome Editing via Low-Temperature Recovery.","authors":"Se Ra Lim, Hyun Ju Kim, Sang Jun Lee","doi":"10.4014/jmb.2403.03033","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR-Cas system is being used as a powerful genome editing tool with developments focused on enhancing its efficiency and accuracy. Recently, the miniature CRISPR-Cas12f1 system, which is small enough to be easily loaded onto various vectors for cellular delivery, has gained attention. In this study, we explored the influence of temperature conditions on multiplex genome editing using CRISPR-Cas12f1 in an <i>Escherichia coli</i> model. It was revealed that when two distinct targets in the genome are edited simultaneously, the editing efficiency can be enhanced by allowing cells to recover at a reduced temperature during the editing process. Additionally, employing 3'-end truncated sgRNAs facilitated the simultaneous single-nucleotide level editing of three targets. Our results underscore the potential of optimizing recovery temperature and sgRNA design protocols in developing more effective and precise strategies for multiplex genome editing across various organisms.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294644/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2403.03033","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

CRISPR-Cas system is being used as a powerful genome editing tool with developments focused on enhancing its efficiency and accuracy. Recently, the miniature CRISPR-Cas12f1 system, which is small enough to be easily loaded onto various vectors for cellular delivery, has gained attention. In this study, we explored the influence of temperature conditions on multiplex genome editing using CRISPR-Cas12f1 in an Escherichia coli model. It was revealed that when two distinct targets in the genome are edited simultaneously, the editing efficiency can be enhanced by allowing cells to recover at a reduced temperature during the editing process. Additionally, employing 3'-end truncated sgRNAs facilitated the simultaneous single-nucleotide level editing of three targets. Our results underscore the potential of optimizing recovery temperature and sgRNA design protocols in developing more effective and precise strategies for multiplex genome editing across various organisms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过低温恢复实现高效 CRISPR-Cas12f1 介导的多重细菌基因组编辑。
CRISPR-Cas 系统是一种强大的基因组编辑工具,其发展重点是提高其效率和准确性。最近,微型CRISPR-Cas12f1系统受到关注,该系统体积小,可轻松装载到各种载体上进行细胞传递。在本研究中,我们在大肠杆菌模型中利用 CRISPR-Cas12f1 探讨了温度条件对多重基因组编辑的影响。研究发现,当同时编辑基因组中两个不同的靶点时,在编辑过程中让细胞在较低的温度下恢复,可以提高编辑效率。此外,采用 3'-end 截短的 sgRNA 也有助于同时对三个靶标进行单核苷酸水平的编辑。我们的研究结果凸显了优化恢复温度和 sgRNA 设计方案在开发更有效、更精确的跨生物多重基因组编辑策略方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of microbiology and biotechnology
Journal of microbiology and biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-MICROBIOLOGY
CiteScore
5.50
自引率
3.60%
发文量
151
审稿时长
2 months
期刊介绍: The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.
期刊最新文献
Human Placenta Extract (HPH) Suppresses Inflammatory Responses in TNF-α/IFN-γ-Stimulated HaCaT Cells and a DNCB Atopic Dermatitis (AD)-Like Mouse Model. Bacterial Community of Breast Milk in Breastfeeding Women Using CultureDependent and Culture-Independent Approaches. Natural Inhibitory Treatment of FungiInduced Deterioration of Carbonate and Cellulosic Ancient Monuments: Isolation, Identification and Simulation of Biogenic Deterioration. Comparative Genomic Analyses of E. coli ST2178 Strains Originated from Wild Birds in Pakistan. Siderophore Biosynthesis and Transport Systems in Model and Pathogenic Fungi.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1