In Silico Typing and Identification Confirmation of Isolates.

Q4 Biochemistry, Genetics and Molecular Biology Methods in molecular biology Pub Date : 2024-01-01 DOI:10.1007/978-1-0716-3898-9_2
Matheus de O Costa, Nahuel Fittipaldi
{"title":"In Silico Typing and Identification Confirmation of Isolates.","authors":"Matheus de O Costa, Nahuel Fittipaldi","doi":"10.1007/978-1-0716-3898-9_2","DOIUrl":null,"url":null,"abstract":"<p><p>Streptococcus suis is an important zoonotic pathogen causing severe infections in pigs and humans. Serotyping of S. suis strains is crucial for epidemiological surveillance, outbreak investigations, and understanding the pathogenesis of this bacterium. Here, we describe a step-by-step approach that enhances a previously developed pipeline by utilizing a computational script for efficient and accurate typing of S. suis strains. The pipeline is implemented in Perl programming language and leverages the Short Read Sequence Typing for Bacterial Pathogens (SRST2) tool. It integrates various bioinformatics techniques and utilizes multiple databases, including a serotype database, cpsH confirmation database, multi-locus sequence typing (MLST) database, recN species-specific gene database, and virulence gene database. These databases contain comprehensive information on S. suis serotypes, genetic markers, and virulence factors. The script can utilize paired-end or single-end fastq files as input and first confirms the species by sequence read data aligning to the recN gene, ensuring the accurate identification of S. suis strains. The pipeline next performs MLST typing and virulence factor identification using SRST2 while in a parallel processes it performs in silico serotyping of the strains. The pipeline offers a streamlined and semiautomated approach to serotyping S. suis strains, facilitating large-scale studies and reducing the manual effort required for data analysis.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":"2815 ","pages":"15-21"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-0716-3898-9_2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Streptococcus suis is an important zoonotic pathogen causing severe infections in pigs and humans. Serotyping of S. suis strains is crucial for epidemiological surveillance, outbreak investigations, and understanding the pathogenesis of this bacterium. Here, we describe a step-by-step approach that enhances a previously developed pipeline by utilizing a computational script for efficient and accurate typing of S. suis strains. The pipeline is implemented in Perl programming language and leverages the Short Read Sequence Typing for Bacterial Pathogens (SRST2) tool. It integrates various bioinformatics techniques and utilizes multiple databases, including a serotype database, cpsH confirmation database, multi-locus sequence typing (MLST) database, recN species-specific gene database, and virulence gene database. These databases contain comprehensive information on S. suis serotypes, genetic markers, and virulence factors. The script can utilize paired-end or single-end fastq files as input and first confirms the species by sequence read data aligning to the recN gene, ensuring the accurate identification of S. suis strains. The pipeline next performs MLST typing and virulence factor identification using SRST2 while in a parallel processes it performs in silico serotyping of the strains. The pipeline offers a streamlined and semiautomated approach to serotyping S. suis strains, facilitating large-scale studies and reducing the manual effort required for data analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
菌株的硅学分型和鉴定确认。
猪链球菌是一种重要的人畜共患病原体,可引起猪和人的严重感染。猪链球菌菌株的血清分型对于流行病学监测、疫情调查和了解该细菌的致病机理至关重要。在此,我们介绍了一种循序渐进的方法,该方法通过利用计算脚本对猪链球菌菌株进行高效、准确的分型,从而增强了之前开发的管道。该方法采用 Perl 编程语言,利用细菌病原体短读序列分型(SRST2)工具。它集成了各种生物信息技术,并利用了多个数据库,包括血清型数据库、cpsH 确认数据库、多焦点序列分型(MLST)数据库、recN 物种特异性基因数据库和毒力基因数据库。这些数据库包含有关鼠疫血清型、遗传标记和毒力因子的全面信息。该脚本可使用成对或单端 fastq 文件作为输入,首先通过与 recN 基因对齐的序列读数数据确认物种,确保准确鉴定 S. suis 菌株。接下来,该管道使用 SRST2 进行 MLST 分型和毒力因子鉴定,同时并行处理菌株血清分型。该管道提供了一种简化的半自动方法来对鼠疫菌株进行血清分型,促进了大规模研究并减少了数据分析所需的人工工作量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Methods in molecular biology
Methods in molecular biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
2.00
自引率
0.00%
发文量
3536
期刊介绍: For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.
期刊最新文献
A Guideline Strategy for Identifying a Viral Gene/Protein Evading Antiviral Innate Immunity. A Guideline Strategy for Identifying Genes/Proteins Regulating Antiviral Innate Immunity. Application of Proteomics Technology Based on LC-MS Combined with Western Blotting and Co-IP in Antiviral Innate Immunity. Click Chemistry in Detecting Protein Modification. CRISPR-Mediated Construction of Gene-Knockout Mice for Investigating Antiviral Innate Immunity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1