T1 mapping from routine 3D T1-weighted inversion recovery sequences in clinical practice: comparison against reference inversion recovery fast field echo T1 scans and feasibility in multiple sclerosis.
Griffin Young, Vivian S Nguyen, Quentin Howlett-Prieto, Amanda Frisosky Abuaf, Timothy J Carroll, Keigo Kawaji, Adil Javed
{"title":"T1 mapping from routine 3D T1-weighted inversion recovery sequences in clinical practice: comparison against reference inversion recovery fast field echo T1 scans and feasibility in multiple sclerosis.","authors":"Griffin Young, Vivian S Nguyen, Quentin Howlett-Prieto, Amanda Frisosky Abuaf, Timothy J Carroll, Keigo Kawaji, Adil Javed","doi":"10.1007/s00234-024-03400-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Quantitative T1 mapping can be an essential tool for assessing tissue injury in multiple sclerosis (MS). We introduce T1-REQUIRE, a method that converts a single high-resolution anatomical 3D T1-weighted Turbo Field Echo (3DT1TFE) scan into a parametric T1 map that could be used for quantitative assessment of tissue damage. We present the accuracy and feasibility of this method in MS.</p><p><strong>Methods: </strong>14 subjects with relapsing-remitting MS and 10 healthy subjects were examined. T1 maps were generated from 3DT1TFE images using T1-REQUIRE, which estimates T1 values using MR signal equations and internal tissue reference T1 values. Estimated T1 of lesions, white, and gray matter regions were compared with reference Inversion-Recovery Fast Field Echo T1 values and analyzed via correlation and Bland-Altman (BA) statistics.</p><p><strong>Results: </strong>159 T1-weighted (T1W) hypointense MS lesions and 288 gray matter regions were examined. T1 values for MS lesions showed a Pearson's correlation of r = 0.81 (p < 0.000), R<sup>2</sup> = 0.65, and Bias = 4.18%. BA statistics showed a mean difference of -53.95 ms and limits of agreement (LOA) of -344.20 and 236.30 ms. Non-lesional normal-appearing white matter had a correlation coefficient of r = 0.82 (p < 0.000), R<sup>2</sup> = 0.67, Bias = 8.78%, mean difference of 73.87 ms, and LOA of -55.67 and 203.41 ms.</p><p><strong>Conclusions: </strong>We demonstrate the feasibility of retroactively derived high-resolution T1 maps from routinely acquired anatomical images, which could be used to quantify tissue pathology in MS. The results of this study will set the stage for testing this method in larger clinical studies for examining MS disease activity and progression.</p>","PeriodicalId":19422,"journal":{"name":"Neuroradiology","volume":" ","pages":"1709-1719"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroradiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00234-024-03400-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and purpose: Quantitative T1 mapping can be an essential tool for assessing tissue injury in multiple sclerosis (MS). We introduce T1-REQUIRE, a method that converts a single high-resolution anatomical 3D T1-weighted Turbo Field Echo (3DT1TFE) scan into a parametric T1 map that could be used for quantitative assessment of tissue damage. We present the accuracy and feasibility of this method in MS.
Methods: 14 subjects with relapsing-remitting MS and 10 healthy subjects were examined. T1 maps were generated from 3DT1TFE images using T1-REQUIRE, which estimates T1 values using MR signal equations and internal tissue reference T1 values. Estimated T1 of lesions, white, and gray matter regions were compared with reference Inversion-Recovery Fast Field Echo T1 values and analyzed via correlation and Bland-Altman (BA) statistics.
Results: 159 T1-weighted (T1W) hypointense MS lesions and 288 gray matter regions were examined. T1 values for MS lesions showed a Pearson's correlation of r = 0.81 (p < 0.000), R2 = 0.65, and Bias = 4.18%. BA statistics showed a mean difference of -53.95 ms and limits of agreement (LOA) of -344.20 and 236.30 ms. Non-lesional normal-appearing white matter had a correlation coefficient of r = 0.82 (p < 0.000), R2 = 0.67, Bias = 8.78%, mean difference of 73.87 ms, and LOA of -55.67 and 203.41 ms.
Conclusions: We demonstrate the feasibility of retroactively derived high-resolution T1 maps from routinely acquired anatomical images, which could be used to quantify tissue pathology in MS. The results of this study will set the stage for testing this method in larger clinical studies for examining MS disease activity and progression.
期刊介绍:
Neuroradiology aims to provide state-of-the-art medical and scientific information in the fields of Neuroradiology, Neurosciences, Neurology, Psychiatry, Neurosurgery, and related medical specialities. Neuroradiology as the official Journal of the European Society of Neuroradiology receives submissions from all parts of the world and publishes peer-reviewed original research, comprehensive reviews, educational papers, opinion papers, and short reports on exceptional clinical observations and new technical developments in the field of Neuroimaging and Neurointervention. The journal has subsections for Diagnostic and Interventional Neuroradiology, Advanced Neuroimaging, Paediatric Neuroradiology, Head-Neck-ENT Radiology, Spine Neuroradiology, and for submissions from Japan. Neuroradiology aims to provide new knowledge about and insights into the function and pathology of the human nervous system that may help to better diagnose and treat nervous system diseases. Neuroradiology is a member of the Committee on Publication Ethics (COPE) and follows the COPE core practices. Neuroradiology prefers articles that are free of bias, self-critical regarding limitations, transparent and clear in describing study participants, methods, and statistics, and short in presenting results. Before peer-review all submissions are automatically checked by iThenticate to assess for potential overlap in prior publication.