Mapping adipocyte interactome networks by HaloTag-enrichment-mass spectrometry.

IF 2.5 Q3 BIOCHEMICAL RESEARCH METHODS Biology Methods and Protocols Pub Date : 2024-05-29 eCollection Date: 2024-01-01 DOI:10.1093/biomethods/bpae039
Junshi Yazaki, Takashi Yamanashi, Shino Nemoto, Atsuo Kobayashi, Yong-Woon Han, Tomoko Hasegawa, Akira Iwase, Masaki Ishikawa, Ryo Konno, Koshi Imami, Yusuke Kawashima, Jun Seita
{"title":"Mapping adipocyte interactome networks by HaloTag-enrichment-mass spectrometry.","authors":"Junshi Yazaki, Takashi Yamanashi, Shino Nemoto, Atsuo Kobayashi, Yong-Woon Han, Tomoko Hasegawa, Akira Iwase, Masaki Ishikawa, Ryo Konno, Koshi Imami, Yusuke Kawashima, Jun Seita","doi":"10.1093/biomethods/bpae039","DOIUrl":null,"url":null,"abstract":"<p><p>Mapping protein interaction complexes in their natural state <i>in vivo</i> is arguably the Holy Grail of protein network analysis. Detection of protein interaction stoichiometry has been an important technical challenge, as few studies have focused on this. This may, however, be solved by artificial intelligence (AI) and proteomics. Here, we describe the development of HaloTag-based affinity purification mass spectrometry (HaloMS), a high-throughput HaloMS assay for protein interaction discovery. The approach enables the rapid capture of newly expressed proteins, eliminating tedious conventional one-by-one assays. As a proof-of-principle, we used HaloMS to evaluate the protein complex interactions of 17 regulatory proteins in human adipocytes. The adipocyte interactome network was validated using an <i>in vitro</i> pull-down assay and AI-based prediction tools. Applying HaloMS to probe adipocyte differentiation facilitated the identification of previously unknown transcription factor (TF)-protein complexes, revealing proteome-wide human adipocyte TF networks and shedding light on how different pathways are integrated.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11180226/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomethods/bpae039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Mapping protein interaction complexes in their natural state in vivo is arguably the Holy Grail of protein network analysis. Detection of protein interaction stoichiometry has been an important technical challenge, as few studies have focused on this. This may, however, be solved by artificial intelligence (AI) and proteomics. Here, we describe the development of HaloTag-based affinity purification mass spectrometry (HaloMS), a high-throughput HaloMS assay for protein interaction discovery. The approach enables the rapid capture of newly expressed proteins, eliminating tedious conventional one-by-one assays. As a proof-of-principle, we used HaloMS to evaluate the protein complex interactions of 17 regulatory proteins in human adipocytes. The adipocyte interactome network was validated using an in vitro pull-down assay and AI-based prediction tools. Applying HaloMS to probe adipocyte differentiation facilitated the identification of previously unknown transcription factor (TF)-protein complexes, revealing proteome-wide human adipocyte TF networks and shedding light on how different pathways are integrated.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 HaloTag 富集质谱法绘制脂肪细胞相互作用组网络图。
绘制体内自然状态下的蛋白质相互作用复合物图谱可以说是蛋白质网络分析的圣杯。检测蛋白质相互作用的化学计量一直是一项重要的技术挑战,因为很少有研究关注这一问题。不过,人工智能(AI)和蛋白质组学可能会解决这个问题。在此,我们介绍了基于HaloTag的亲和纯化质谱(HaloMS)的开发情况,这是一种用于发现蛋白质相互作用的高通量HaloMS检测方法。这种方法能快速捕获新表达的蛋白质,省去了传统的逐一检测的繁琐过程。作为原理验证,我们使用 HaloMS 评估了人类脂肪细胞中 17 种调控蛋白的蛋白复合物相互作用。脂肪细胞相互作用组网络通过体外牵引试验和基于人工智能的预测工具得到了验证。应用HaloMS探测脂肪细胞分化有助于鉴定以前未知的转录因子(TF)-蛋白质复合物,揭示整个蛋白质组的人类脂肪细胞TF网络,并揭示不同通路是如何整合的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biology Methods and Protocols
Biology Methods and Protocols Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
3.80
自引率
2.80%
发文量
28
审稿时长
19 weeks
期刊最新文献
Optimizing Western blotting immunodetection: Streamlining antibody cocktails for reduced protocol time and enhanced multiplexing applications. Live cell fluorescence microscopy-an end-to-end workflow for high-throughput image and data analysis. A reproducible method to study traumatic injury-induced zebrafish brain regeneration. Cluster analysis identifies long COVID subtypes in Belgian patients. Unpacking unstructured data: A pilot study on extracting insights from neuropathological reports of Parkinson's Disease patients using large language models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1