Multi-Modality Deep Infarct: Non-invasive identification of infarcted myocardium using composite in-silico-human data learning.

Rana Raza Mehdi, Nikhil Kadivar, Tanmay Mukherjee, Emilio A Mendiola, Dipan J Shah, George Karniadakis, Reza Avazmohammadi
{"title":"Multi-Modality Deep Infarct: Non-invasive identification of infarcted myocardium using composite in-silico-human data learning.","authors":"Rana Raza Mehdi, Nikhil Kadivar, Tanmay Mukherjee, Emilio A Mendiola, Dipan J Shah, George Karniadakis, Reza Avazmohammadi","doi":"10.21203/rs.3.rs-4468678/v1","DOIUrl":null,"url":null,"abstract":"<p><p>Myocardial infarction (MI) continues to be a leading cause of death worldwide. The precise quantification of infarcted tissue is crucial to diagnosis, therapeutic management, and post-MI care. Late gadolinium enhancement-cardiac magnetic resonance (LGE-CMR) is regarded as the gold standard for precise infarct tissue localization in MI patients. A fundamental limitation of LGE-CMR is the invasive intravenous introduction of gadolinium-based contrast agents that present potential high-risk toxicity, particularly for individuals with underlying chronic kidney diseases. Herein, we develop a completely non-invasive methodology that identifies the location and extent of an infarct region in the left ventricle via a machine learning (ML) model using only cardiac strains as inputs. In this transformative approach, we demonstrate the remarkable performance of a multi-fidelity ML model that combines rodent-based in-silico-generated training data (low-fidelity) with very limited patient-specific human data (high-fidelity) in predicting LGE ground truth. Our results offer a new paradigm for developing feasible prognostic tools by augmenting synthetic simulation-based data with very small amounts of in-vivo human data. More broadly, the proposed approach can significantly assist with addressing biomedical challenges in healthcare where human data are limited.</p>","PeriodicalId":94282,"journal":{"name":"Research square","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177985/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research square","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-4468678/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Myocardial infarction (MI) continues to be a leading cause of death worldwide. The precise quantification of infarcted tissue is crucial to diagnosis, therapeutic management, and post-MI care. Late gadolinium enhancement-cardiac magnetic resonance (LGE-CMR) is regarded as the gold standard for precise infarct tissue localization in MI patients. A fundamental limitation of LGE-CMR is the invasive intravenous introduction of gadolinium-based contrast agents that present potential high-risk toxicity, particularly for individuals with underlying chronic kidney diseases. Herein, we develop a completely non-invasive methodology that identifies the location and extent of an infarct region in the left ventricle via a machine learning (ML) model using only cardiac strains as inputs. In this transformative approach, we demonstrate the remarkable performance of a multi-fidelity ML model that combines rodent-based in-silico-generated training data (low-fidelity) with very limited patient-specific human data (high-fidelity) in predicting LGE ground truth. Our results offer a new paradigm for developing feasible prognostic tools by augmenting synthetic simulation-based data with very small amounts of in-vivo human data. More broadly, the proposed approach can significantly assist with addressing biomedical challenges in healthcare where human data are limited.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多模态深度梗塞:利用硅内-人类复合数据学习无创识别梗死心肌。
心肌梗死(MI)仍然是全球死亡的主要原因。梗死组织的精确定量对于诊断、治疗管理和心肌梗死后的护理至关重要。晚期钆增强-心脏磁共振成像(LGE-CMR)被认为是精确定位心肌梗死患者梗死组织的黄金标准。LGE-CMR 的一个基本局限是需要通过侵入性静脉注射钆基造影剂,而钆基造影剂具有潜在的高风险毒性,尤其是对患有慢性肾脏疾病的患者而言。在此,我们开发了一种完全无创的方法,通过机器学习(ML)模型,仅使用心脏应变作为输入,就能确定左心室梗死区域的位置和范围。在这一变革性方法中,我们展示了多保真度 ML 模型的卓越性能,该模型结合了基于啮齿动物硅胶内生成的训练数据(低保真度)和非常有限的患者特异性人类数据(高保真度),用于预测 LGE 地面真值。我们的研究结果为开发可行的预后工具提供了一种新的范例,即通过极少量的活体人体数据来增强基于合成模拟的数据。更广泛地说,所提出的方法可以极大地帮助解决人类数据有限的医疗保健领域的生物医学难题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Long non-coding RNA Malat1 fine-tunes bone homeostasis and repair by orchestrating cellular crosstalk and the β-catenin-OPG/Jagged1 pathway. Dietary lipid is largely deposited in skin and rapidly affects insulating properties. Novel Machine Learning of DNA Methylation Patterns to Diagnose Complex Disease: Identification of Cerebral Palsy with Concurrent Epilepsy. The context-dependent epigenetic and organogenesis programs determine 3D vs. 2D cellular fitness of MYC-driven murine liver cancer cells. GZMK+CD8+ T cells Target A Specific Acinar Cell Type in Sjögren's Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1