Controlling electrothermal behavior of Metal–Carbon hybrid wire in free molecular flow region

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Carbon Pub Date : 2024-06-10 DOI:10.1016/j.carbon.2024.119327
Seung Su Kang , Suar Oh , Dang Xuan Dang , Giheon Kim , Minjeong Kim , Won Seok Kim , Seong Chu Lim
{"title":"Controlling electrothermal behavior of Metal–Carbon hybrid wire in free molecular flow region","authors":"Seung Su Kang ,&nbsp;Suar Oh ,&nbsp;Dang Xuan Dang ,&nbsp;Giheon Kim ,&nbsp;Minjeong Kim ,&nbsp;Won Seok Kim ,&nbsp;Seong Chu Lim","doi":"10.1016/j.carbon.2024.119327","DOIUrl":null,"url":null,"abstract":"<div><p>We investigated the heat loss of the metal wire to the gases in the free molecular region, whose pressure is below 10<sup>−3</sup> Pa. The heat transfer characteristics at the interface between the metal surface and the gases are only accessible when the conductional heat loss along the wire is comparable to or less than 100 nW/K. Unfortunately, such an infinitesimal heat flow is not controllable from typical metal wire. For this reason, we have synthesized a new material, metal-carbon hybrid wire (MCHW). In the free molecular flow region, the resistance of MCHW is inversely proportional to the pressure (P), R∼1/P, regardless of gas species, which contradicts the gas-dependent heat loss theory. At a pressure &lt;1 × 10<sup>−4</sup> Pa, we observe a deviation from reciprocal linearity attributed to a growing radiational heat loss. Our results realize the thermal conductive sensing of the pressure below 10<sup>−5</sup> Pa, which has been unprecedented.</p></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324005463","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We investigated the heat loss of the metal wire to the gases in the free molecular region, whose pressure is below 10−3 Pa. The heat transfer characteristics at the interface between the metal surface and the gases are only accessible when the conductional heat loss along the wire is comparable to or less than 100 nW/K. Unfortunately, such an infinitesimal heat flow is not controllable from typical metal wire. For this reason, we have synthesized a new material, metal-carbon hybrid wire (MCHW). In the free molecular flow region, the resistance of MCHW is inversely proportional to the pressure (P), R∼1/P, regardless of gas species, which contradicts the gas-dependent heat loss theory. At a pressure <1 × 10−4 Pa, we observe a deviation from reciprocal linearity attributed to a growing radiational heat loss. Our results realize the thermal conductive sensing of the pressure below 10−5 Pa, which has been unprecedented.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
控制自由分子流区金属-碳混合丝的电热行为
我们研究了金属丝在压力低于 10-3 Pa 的自由分子区域内向气体的热损失。只有当金属丝的传导热损失相当于或小于 100 nW/K 时,才能获得金属表面与气体界面的传热特性。遗憾的是,一般的金属丝无法控制如此微小的热流。为此,我们合成了一种新材料--金属-碳混合丝(MCHW)。在自由分子流区域,MCHW 的电阻与压力(P)成反比,即 R∼1/P,与气体种类无关,这与气体热损失理论相矛盾。在压力 <1 × 10-4 Pa 时,我们观察到与倒数线性关系的偏差,这归因于辐射热损失的增加。我们的研究结果实现了对 10-5 Pa 以下压力的热传导感应,这是前所未有的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
期刊最新文献
Redox-active hydrogel electrolytes for carbon-based flexible supercapacitors over a wide temperature range New insights into the role of nitrogen doping in microporous carbon on the capacitive charge storage mechanism: from ab initio to machine learning accelerated molecular dynamics Mechanics of microblister tests in 2D materials accounting for frictional slippage Controllable preparation of carbon nanofiber membranes for enhanced flexibility and permeability Copper molybdenum sulfide coupled with multi-walled carbon nanotube nanocomposite for robust water splitting process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1