Optimisation of MHD flow within trapezoidal cavity containing hybrid nanofluid by artificial neural network

IF 4 3区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS International Journal of Numerical Methods for Heat & Fluid Flow Pub Date : 2024-06-18 DOI:10.1108/hff-01-2024-0058
Arooj Tanveer, Sami Ul Haq, Muhammad Bilal Ashraf, Muhammad Usman Ashraf, R. Nawaz
{"title":"Optimisation of MHD flow within trapezoidal cavity containing hybrid nanofluid by artificial neural network","authors":"Arooj Tanveer, Sami Ul Haq, Muhammad Bilal Ashraf, Muhammad Usman Ashraf, R. Nawaz","doi":"10.1108/hff-01-2024-0058","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This study aims to numerically investigate heat transport in a trapezoidal cavity using hybrid nanoparticles (Ag-$Al_2O_3$). Unlike previous studies, this one covers magnetohydrodynamics, joule heating with viscous dissipation, heat absorption and generation. The left and right sides of the chasm are frigid. The upper wall heats, whereas the bottom wall remains adiabatic.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>After reducing the system of dimensional equations to dimensionless equations, the authors use the Galerkin finite element method to solve them numerically. Geometric parameters affect heating efficiency; thus, the authors use flow metrics such as the Reynold number Re, magnetic parameter M, volume fraction coefficient, heat absorption and Eckert number Ec. The authors use the finite volume method to solve the governing equations after converting them to dimensionless form. The authors also try the artificial neural network method to predict the innovative cavity’s heat response in future scenarios. Transition state charts, regression analysis, MSE and error histograms accelerate, smooth and accurately converge solutions.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>As the magnetic parameter and Eckert number increase, the enclosure emits more heat. As Reynold and volume fraction coefficients rise, the Nusselt number falls. It rose as magnetic, Eckert and heat absorption characteristics increased. The average Nusselt number rises with Reynolds and volume fraction coefficients. The magnetic, Eckert and heat absorption characteristics have inverse values.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This study numerically investigates heat transport in a trapezoidal cavity using hybrid nanoparticles (Ag-$Al_2O_3$). Unlike previous studies, this one covers MHD, joule heating with viscous dissipation, heat absorption and generation. The left and right sides of the chasm are frigid. The upper wall heats, whereas the bottom wall remains adiabatic.</p><!--/ Abstract__block -->","PeriodicalId":14263,"journal":{"name":"International Journal of Numerical Methods for Heat & Fluid Flow","volume":"292 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Methods for Heat & Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/hff-01-2024-0058","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

This study aims to numerically investigate heat transport in a trapezoidal cavity using hybrid nanoparticles (Ag-$Al_2O_3$). Unlike previous studies, this one covers magnetohydrodynamics, joule heating with viscous dissipation, heat absorption and generation. The left and right sides of the chasm are frigid. The upper wall heats, whereas the bottom wall remains adiabatic.

Design/methodology/approach

After reducing the system of dimensional equations to dimensionless equations, the authors use the Galerkin finite element method to solve them numerically. Geometric parameters affect heating efficiency; thus, the authors use flow metrics such as the Reynold number Re, magnetic parameter M, volume fraction coefficient, heat absorption and Eckert number Ec. The authors use the finite volume method to solve the governing equations after converting them to dimensionless form. The authors also try the artificial neural network method to predict the innovative cavity’s heat response in future scenarios. Transition state charts, regression analysis, MSE and error histograms accelerate, smooth and accurately converge solutions.

Findings

As the magnetic parameter and Eckert number increase, the enclosure emits more heat. As Reynold and volume fraction coefficients rise, the Nusselt number falls. It rose as magnetic, Eckert and heat absorption characteristics increased. The average Nusselt number rises with Reynolds and volume fraction coefficients. The magnetic, Eckert and heat absorption characteristics have inverse values.

Originality/value

This study numerically investigates heat transport in a trapezoidal cavity using hybrid nanoparticles (Ag-$Al_2O_3$). Unlike previous studies, this one covers MHD, joule heating with viscous dissipation, heat absorption and generation. The left and right sides of the chasm are frigid. The upper wall heats, whereas the bottom wall remains adiabatic.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人工神经网络优化含有混合纳米流体的梯形腔内的 MHD 流动
目的 本研究旨在利用混合纳米粒子(Ag-$Al_2O_3$)对梯形空腔中的热传输进行数值研究。与以往研究不同的是,本研究涵盖了磁流体力学、焦耳加热与粘性耗散、吸热与发热。鸿沟的左右两侧是冰冷的。设计/方法/途径在将一维方程系统简化为无量纲方程后,作者使用 Galerkin 有限元法对其进行数值求解。几何参数会影响加热效率;因此,作者使用了雷诺数 Re、磁参数 M、体积分数系数、吸热和埃克特数 Ec 等流动指标。作者使用有限体积法求解将其转换为无量纲形式的控制方程。作者还尝试使用人工神经网络方法来预测创新型空腔在未来情况下的热响应。研究结果随着磁参数和埃克特数的增加,腔体散发出更多的热量。随着雷诺系数和体积分数系数的增加,努塞尔特数下降。随着磁性、埃克特数和吸热特性的增加,努塞尔特数也随之上升。平均努塞特数随雷诺系数和体积分数系数上升而上升。本研究使用混合纳米粒子(Ag-$Al_2O_3$)对梯形空腔中的热传输进行了数值研究。与以往研究不同的是,本研究涵盖了 MHD、焦耳加热与粘性耗散、吸热与发热。鸿沟的左右两侧是冰冷的。上壁发热,而下壁保持绝热。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.50
自引率
11.90%
发文量
100
审稿时长
6-12 weeks
期刊介绍: The main objective of this international journal is to provide applied mathematicians, engineers and scientists engaged in computer-aided design and research in computational heat transfer and fluid dynamics, whether in academic institutions of industry, with timely and accessible information on the development, refinement and application of computer-based numerical techniques for solving problems in heat and fluid flow. - See more at: http://emeraldgrouppublishing.com/products/journals/journals.htm?id=hff#sthash.Kf80GRt8.dpuf
期刊最新文献
Electroosmosis-modulated Darcy–Brinkman flow in sinusoidal microfluidic pipe: an analytical approach Quantification analysis of high-speed train aerodynamics with geometric uncertainty of streamlined shape Slip flow between corotating disks with heat transfer Structural dynamic responses evaluation of pedestrian bridge under effect of aerodynamic disturbance of high-speed train Linear and energy stability analyses of onset of Darcy-Bénard convection due to combustion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1