{"title":"DNA packaging by molecular motors: from bacteriophage to human chromosomes","authors":"Bram Prevo, William C. Earnshaw","doi":"10.1038/s41576-024-00740-y","DOIUrl":null,"url":null,"abstract":"Dense packaging of genomic DNA is crucial for organismal survival, as DNA length always far exceeds the dimensions of the cells that contain it. Organisms, therefore, use sophisticated machineries to package their genomes. These systems range across kingdoms from a single ultra-powerful rotary motor that spools the DNA into a bacteriophage head, to hundreds of thousands of relatively weak molecular motors that coordinate the compaction of mitotic chromosomes in eukaryotic cells. Recent technological advances, such as DNA proximity-based sequencing approaches, polymer modelling and in vitro reconstitution of DNA loop extrusion, have shed light on the biological mechanisms driving DNA organization in different systems. Here, we discuss DNA packaging in bacteriophage, bacteria and eukaryotic cells, which, despite their extreme variation in size, structure and genomic content, all rely on the action of molecular motors to package their genomes. In this Review, the authors summarize DNA packaging in bacteriophage, bacteria and eukaryotic cells. They describe the difficulties each system faces when packaging its DNA, outline the molecular motor components involved, and provide insights from new studies that reveal how DNA organization is achieved.","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":null,"pages":null},"PeriodicalIF":39.1000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41576-024-00740-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Dense packaging of genomic DNA is crucial for organismal survival, as DNA length always far exceeds the dimensions of the cells that contain it. Organisms, therefore, use sophisticated machineries to package their genomes. These systems range across kingdoms from a single ultra-powerful rotary motor that spools the DNA into a bacteriophage head, to hundreds of thousands of relatively weak molecular motors that coordinate the compaction of mitotic chromosomes in eukaryotic cells. Recent technological advances, such as DNA proximity-based sequencing approaches, polymer modelling and in vitro reconstitution of DNA loop extrusion, have shed light on the biological mechanisms driving DNA organization in different systems. Here, we discuss DNA packaging in bacteriophage, bacteria and eukaryotic cells, which, despite their extreme variation in size, structure and genomic content, all rely on the action of molecular motors to package their genomes. In this Review, the authors summarize DNA packaging in bacteriophage, bacteria and eukaryotic cells. They describe the difficulties each system faces when packaging its DNA, outline the molecular motor components involved, and provide insights from new studies that reveal how DNA organization is achieved.
基因组 DNA 的密集包装对生物体的生存至关重要,因为 DNA 的长度总是远远超过含有 DNA 的细胞的尺寸。因此,生物体使用复杂的机器来包装它们的基因组。这些系统遍布各个领域,从将 DNA 装入噬菌体头部的单个超强旋转电机,到协调真核细胞有丝分裂染色体压缩的数十万个相对较弱的分子马达,不一而足。最近的技术进步,如基于DNA邻近性的测序方法、聚合物建模和DNA环挤压的体外重组,揭示了不同系统中驱动DNA组织的生物机制。在这里,我们将讨论噬菌体、细菌和真核细胞中的 DNA 包装,尽管它们在大小、结构和基因组内容上存在极大差异,但都依赖分子马达的作用来包装基因组。
期刊介绍:
At Nature Reviews Genetics, our goal is to be the leading source of reviews and commentaries for the scientific communities we serve. We are dedicated to publishing authoritative articles that are easily accessible to our readers. We believe in enhancing our articles with clear and understandable figures, tables, and other display items. Our aim is to provide an unparalleled service to authors, referees, and readers, and we are committed to maximizing the usefulness and impact of each article we publish.
Within our journal, we publish a range of content including Research Highlights, Comments, Reviews, and Perspectives that are relevant to geneticists and genomicists. With our broad scope, we ensure that the articles we publish reach the widest possible audience.
As part of the Nature Reviews portfolio of journals, we strive to uphold the high standards and reputation associated with this esteemed collection of publications.