Site-Specific DNA Post-Synthetic Modification via Fast Photocatalytic Allylation

IF 4.6 1区 化学 Q1 CHEMISTRY, ORGANIC Organic Chemistry Frontiers Pub Date : 2024-06-18 DOI:10.1039/d4qo00752b
Ying Huang, Yixin Zhang, Chenchen Hu, Yiyun Chen
{"title":"Site-Specific DNA Post-Synthetic Modification via Fast Photocatalytic Allylation","authors":"Ying Huang, Yixin Zhang, Chenchen Hu, Yiyun Chen","doi":"10.1039/d4qo00752b","DOIUrl":null,"url":null,"abstract":"Developing new chemical toolboxes for site-specific nucleic acid post-synthetic modification is of great challenge and urgently required for precisely expanding DNA functionality, which holds significant research implications in nucleic acid chemistry, biology, and beyond. Herein, we demonstrate the first site-specific DNA post-synthetic modification via fast photocatalytic allylation under visible light. Allyl sulfone groups were introduced into oligonucleotides, not only at the terminal sites via traditional amidation reactions but also at the internal and terminal sites via DNA solid-phase synthesis. This visible-light-induced photocatalytic decarboxylative allylation proceeds rapidly on the oligonucleotides bearing allyl sulfone groups under open-to-air conditions within minutes, exhibiting excellent chemoselectivity and compatibility with various functional groups while retaining the DNA integrity. Specifically, introducing allyl sulfone into oligonucleotides via DNA solid-phase synthesis enables site-specific DNA modification on chemically synthesized single-stranded DNA at internal and terminal positions, hybridized double-stranded DNA, and enzymatically amplified long-chain DNA under visible light. The versatile reactivity of allyl sulfone scaffolds further enables diverse on-DNA photocatalytic transformations, promising to advance chemical toolboxes for DNA post-synthetic modification through diverse photochemical methods.","PeriodicalId":97,"journal":{"name":"Organic Chemistry Frontiers","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qo00752b","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Developing new chemical toolboxes for site-specific nucleic acid post-synthetic modification is of great challenge and urgently required for precisely expanding DNA functionality, which holds significant research implications in nucleic acid chemistry, biology, and beyond. Herein, we demonstrate the first site-specific DNA post-synthetic modification via fast photocatalytic allylation under visible light. Allyl sulfone groups were introduced into oligonucleotides, not only at the terminal sites via traditional amidation reactions but also at the internal and terminal sites via DNA solid-phase synthesis. This visible-light-induced photocatalytic decarboxylative allylation proceeds rapidly on the oligonucleotides bearing allyl sulfone groups under open-to-air conditions within minutes, exhibiting excellent chemoselectivity and compatibility with various functional groups while retaining the DNA integrity. Specifically, introducing allyl sulfone into oligonucleotides via DNA solid-phase synthesis enables site-specific DNA modification on chemically synthesized single-stranded DNA at internal and terminal positions, hybridized double-stranded DNA, and enzymatically amplified long-chain DNA under visible light. The versatile reactivity of allyl sulfone scaffolds further enables diverse on-DNA photocatalytic transformations, promising to advance chemical toolboxes for DNA post-synthetic modification through diverse photochemical methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过快速光催化烯丙基化实现特定位点 DNA 合成后修饰
开发新的化学工具箱用于位点特异性核酸合成后修饰是一项巨大的挑战,也是精确扩展 DNA 功能的迫切需要,对核酸化学、生物学及其他领域具有重要的研究意义。在此,我们首次展示了在可见光下通过快速光催化烯丙基化作用对 DNA 进行位点特异性合成后修饰的方法。烯丙基砜基团不仅通过传统的酰胺化反应被引入寡核苷酸的末端位点,还通过 DNA 固相合成被引入内部和末端位点。这种可见光诱导的光催化脱羧烯丙基化反应在露天条件下几分钟内就能在带有烯丙基砜基团的寡核苷酸上迅速进行,在保留 DNA 完整性的同时,还表现出极佳的化学选择性和与各种官能团的兼容性。具体来说,通过 DNA 固相合成将烯丙基砜引入寡核苷酸,可在可见光下对化学合成的单链 DNA 的内部和末端位置、杂交的双链 DNA 以及酶扩增的长链 DNA 进行特定位点的 DNA 修饰。烯丙基砜支架的多功能反应性进一步实现了多种 DNA 上的光催化转化,有望通过多种光化学方法推进 DNA 后合成修饰的化学工具箱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Organic Chemistry Frontiers
Organic Chemistry Frontiers CHEMISTRY, ORGANIC-
CiteScore
7.90
自引率
11.10%
发文量
686
审稿时长
1 months
期刊介绍: Organic Chemistry Frontiers is an esteemed journal that publishes high-quality research across the field of organic chemistry. It places a significant emphasis on studies that contribute substantially to the field by introducing new or significantly improved protocols and methodologies. The journal covers a wide array of topics which include, but are not limited to, organic synthesis, the development of synthetic methodologies, catalysis, natural products, functional organic materials, supramolecular and macromolecular chemistry, as well as physical and computational organic chemistry.
期刊最新文献
A Ligand-assisted Manganese-enabled Direct C-H Difluoromethylation of Arenes Photoredox-Enabled Ring-Opening of Cyclobutanes via the Formation of a Carbon Radical Asymmetric Synthesis of 1H-pyrazolo[3,4-b]pyridine Analogues Catalyzed by Chiral-at-Metal Rh(III) Complexes Total Synthesis of (‒)-Deglycocadambine Copper-Catalyzed Allenynylative C–P Couplings of Diynylic Acetates with Hydrophosphoryl Compounds Leading to Phosphorylated Allenynes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1