Joint application of the Monte Carlo method and computational probabilistic analysis in problems of numerical modeling with data uncertainties

IF 0.8 Q3 STATISTICS & PROBABILITY Monte Carlo Methods and Applications Pub Date : 2024-06-18 DOI:10.1515/mcma-2024-2006
B. Dobronets, O. Popova
{"title":"Joint application of the Monte Carlo method and computational probabilistic analysis in problems of numerical modeling with data uncertainties","authors":"B. Dobronets, O. Popova","doi":"10.1515/mcma-2024-2006","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we suggest joint application of computational probabilistic analysis and the Monte Carlo method for numerical stochastic modeling problems. We use all the capabilities of computational probabilistic analysis while maintaining all the advantages of the Monte Carlo method. Our approach allows us to efficiently implement a computational hybrid scheme. In this way, we reduce the computation time and present the results in the form of distributions. The crucial new points of our method are arithmetic operations on probability density functions and procedures for constructing on the probabilistic extensions. Relying on specific numerical examples of solving systems of linear algebraic equations with random coefficients, we present the advantages of our approach.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2024-2006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we suggest joint application of computational probabilistic analysis and the Monte Carlo method for numerical stochastic modeling problems. We use all the capabilities of computational probabilistic analysis while maintaining all the advantages of the Monte Carlo method. Our approach allows us to efficiently implement a computational hybrid scheme. In this way, we reduce the computation time and present the results in the form of distributions. The crucial new points of our method are arithmetic operations on probability density functions and procedures for constructing on the probabilistic extensions. Relying on specific numerical examples of solving systems of linear algebraic equations with random coefficients, we present the advantages of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蒙特卡罗方法和计算概率分析在具有数据不确定性的数值建模问题中的联合应用
摘要 本文建议在数值随机建模问题中联合应用计算概率分析和蒙特卡罗方法。我们利用了计算概率分析的所有功能,同时保留了蒙特卡罗方法的所有优点。我们的方法允许我们有效地实施计算混合方案。通过这种方式,我们缩短了计算时间,并以分布的形式呈现结果。我们方法的新关键点在于概率密度函数的算术运算和概率扩展的构建程序。通过解决具有随机系数的线性代数方程组的具体数值示例,我们介绍了我们方法的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
期刊最新文献
Investigating the ecological fallacy through sampling distributions constructed from finite populations Joint application of the Monte Carlo method and computational probabilistic analysis in problems of numerical modeling with data uncertainties Choice of a constant in the expression for the error of the Monte Carlo method Estimation in shape mixtures of skew-normal linear regression models via ECM coupled with Gibbs sampling A gradient method for high-dimensional BSDEs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1